MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdvspth Structured version   Unicode version

Theorem wlkdvspth 23519
Description: A walk consisting of different vertices is a simple path. (Contributed by Alexander van der Vekens, 27-Oct-2017.)
Assertion
Ref Expression
wlkdvspth  |-  ( ( F ( V Walks  E
) P  /\  Fun  `' P )  ->  F
( V SPaths  E ) P )

Proof of Theorem wlkdvspth
Dummy variables  k 
e  f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wlk 23427 . . . 4  |- Walks  =  ( v  e.  _V , 
e  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  e  /\  p : ( 0 ... ( # `  f ) ) --> v  /\  A. k  e.  ( 0..^ ( # `  f ) ) ( e `  ( f `
 k ) )  =  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) } ) } )
21brovmpt2ex 6753 . . 3  |-  ( F ( V Walks  E ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
3 simpr1 994 . . . . . . . . . . 11  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  /\  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  ->  F  e. Word  dom  E )
4 df-f1 5435 . . . . . . . . . . . . . . . . . 18  |-  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  <->  ( P : ( 0 ... ( # `  F
) ) --> V  /\  Fun  `' P ) )
5 wlkdvspthlem 23518 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) -1-1-> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  Fun  `' F )
653exp 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e. Word  dom  E  ->  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  Fun  `' F ) ) )
76com3l 81 . . . . . . . . . . . . . . . . . 18  |-  ( P : ( 0 ... ( # `  F
) ) -1-1-> V  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( F  e. Word  dom  E  ->  Fun  `' F ) ) )
84, 7sylbir 213 . . . . . . . . . . . . . . . . 17  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  Fun  `' P )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( F  e. Word  dom  E  ->  Fun  `' F ) ) )
98expcom 435 . . . . . . . . . . . . . . . 16  |-  ( Fun  `' P  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( F  e. Word  dom  E  ->  Fun  `' F ) ) ) )
109com14 88 . . . . . . . . . . . . . . 15  |-  ( F  e. Word  dom  E  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  ->  ( Fun  `' P  ->  Fun  `' F ) ) ) )
11103imp 1181 . . . . . . . . . . . . . 14  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( Fun  `' P  ->  Fun  `' F ) )
1211com12 31 . . . . . . . . . . . . 13  |-  ( Fun  `' P  ->  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  Fun  `' F ) )
1312adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  (
( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  ->  Fun  `' F ) )
1413imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  /\  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  ->  Fun  `' F )
153, 14jca 532 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  /\  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  -> 
( F  e. Word  dom  E  /\  Fun  `' F
) )
16 simpr2 995 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  /\  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
17 simpr3 996 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  /\  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  ->  A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
1815, 16, 173jca 1168 . . . . . . . . 9  |-  ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  /\  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  -> 
( ( F  e. Word  dom  E  /\  Fun  `' F )  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
1918ex 434 . . . . . . . 8  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  (
( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )  -> 
( ( F  e. Word  dom  E  /\  Fun  `' F )  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
20 iswlk 23438 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Walks  E ) P 
<->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } ) ) )
2120adantr 465 . . . . . . . 8  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  ( F ( V Walks  E
) P  <->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
22 istrl 23448 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Trails  E ) P 
<->  ( ( F  e. Word  dom  E  /\  Fun  `' F )  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2322adantr 465 . . . . . . . 8  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  ( F ( V Trails  E
) P  <->  ( ( F  e. Word  dom  E  /\  Fun  `' F )  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2419, 21, 233imtr4d 268 . . . . . . 7  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  ( F ( V Walks  E
) P  ->  F
( V Trails  E ) P ) )
25 simpr 461 . . . . . . 7  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  Fun  `' P )
2624, 25jctird 544 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  ( F ( V Walks  E
) P  ->  ( F ( V Trails  E
) P  /\  Fun  `' P ) ) )
27 isspth 23480 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V SPaths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' P ) ) )
2827bicomd 201 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( ( F ( V Trails  E
) P  /\  Fun  `' P )  <->  F ( V SPaths  E ) P ) )
2928adantr 465 . . . . . 6  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  (
( F ( V Trails  E ) P  /\  Fun  `' P )  <->  F ( V SPaths  E ) P ) )
3026, 29sylibd 214 . . . . 5  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) )  /\  Fun  `' P )  ->  ( F ( V Walks  E
) P  ->  F
( V SPaths  E ) P ) )
3130ex 434 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( Fun  `' P  ->  ( F
( V Walks  E ) P  ->  F ( V SPaths  E ) P ) ) )
3231com23 78 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Walks  E ) P  ->  ( Fun  `' P  ->  F ( V SPaths  E ) P ) ) )
332, 32mpcom 36 . 2  |-  ( F ( V Walks  E ) P  ->  ( Fun  `' P  ->  F ( V SPaths  E ) P ) )
3433imp 429 1  |-  ( ( F ( V Walks  E
) P  /\  Fun  `' P )  ->  F
( V SPaths  E ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   _Vcvv 2984   {cpr 3891   class class class wbr 4304   `'ccnv 4851   dom cdm 4852   Fun wfun 5424   -->wf 5426   -1-1->wf1 5427   ` cfv 5430  (class class class)co 6103   0cc0 9294   1c1 9295    + caddc 9297   ...cfz 11449  ..^cfzo 11560   #chash 12115  Word cword 12233   Walks cwalk 23417   Trails ctrail 23418   SPaths cspath 23420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-n0 10592  df-z 10659  df-uz 10874  df-fz 11450  df-fzo 11561  df-hash 12116  df-word 12241  df-wlk 23427  df-trail 23428  df-spth 23430
This theorem is referenced by:  usg2wotspth  30415
  Copyright terms: Public domain W3C validator