Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfeqfb Structured version   Visualization version   Unicode version

Theorem wl-nfeqfb 31863
 Description: Extend nfeqf 2138 to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019.)
Assertion
Ref Expression
wl-nfeqfb

Proof of Theorem wl-nfeqfb
StepHypRef Expression
1 nfr 1950 . . . . 5
21imp 431 . . . 4
3 wl-aleq 31861 . . . . 5
43simprbi 466 . . . 4
52, 4syl 17 . . 3
6 nfnt 1981 . . . . . 6
76nfrd 1952 . . . . 5
87imp 431 . . . 4
9 alnex 1664 . . . . . 6
10 wl-exeq 31860 . . . . . 6
119, 10xchbinx 312 . . . . 5
12 3ioran 1002 . . . . 5
1311, 12sylbb 201 . . . 4
14 3simpc 1006 . . . 4
15 pm5.21 868 . . . 4
168, 13, 14, 154syl 19 . . 3
175, 16pm2.61dan 799 . 2
18 ax7 1859 . . . . 5
1918al2imi 1686 . . . 4
20 wl-nftht 31862 . . . 4
2119, 20syl6 34 . . 3
22 nfeqf 2138 . . . 4
2322ex 436 . . 3
2421, 23bija 357 . 2
2517, 24impbii 191 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 188   wa 371   w3o 983   w3a 984  wal 1441  wex 1662  wnf 1666 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-12 1932  ax-13 2090 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-ex 1663  df-nf 1667 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator