Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfae1 Structured version   Visualization version   Unicode version

Theorem wl-nfae1 31904
Description: Unlike nfae 2160, this specialized theorem avoids ax-11 1930. (Contributed by Wolf Lammen, 26-Jun-2019.)
Assertion
Ref Expression
wl-nfae1  |-  F/ x A. y  y  =  x

Proof of Theorem wl-nfae1
StepHypRef Expression
1 aecom 2155 . 2  |-  ( A. y  y  =  x  <->  A. x  x  =  y )
2 nfa1 1989 . 2  |-  F/ x A. x  x  =  y
31, 2nfxfr 1706 1  |-  F/ x A. y  y  =  x
Colors of variables: wff setvar class
Syntax hints:   A.wal 1452   F/wnf 1677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-12 1943  ax-13 2101
This theorem depends on definitions:  df-bi 190  df-an 377  df-ex 1674  df-nf 1678
This theorem is referenced by:  wl-nfnae1  31905
  Copyright terms: Public domain W3C validator