Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-exeq Structured version   Unicode version

Theorem wl-exeq 29914
Description: The semantics of  E. x
y  =  z. (Contributed by Wolf Lammen, 27-Apr-2018.)
Assertion
Ref Expression
wl-exeq  |-  ( E. x  y  =  z  <-> 
( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z
) )

Proof of Theorem wl-exeq
StepHypRef Expression
1 nfeqf 2018 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  F/ x  y  =  z )
2119.9d 1840 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  -.  A. x  x  =  z )  ->  ( E. x  y  =  z  ->  y  =  z ) )
32impancom 440 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  E. x  y  =  z
)  ->  ( -.  A. x  x  =  z  ->  y  =  z ) )
43orrd 378 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  E. x  y  =  z
)  ->  ( A. x  x  =  z  \/  y  =  z
) )
54expcom 435 . . . 4  |-  ( E. x  y  =  z  ->  ( -.  A. x  x  =  y  ->  ( A. x  x  =  z  \/  y  =  z ) ) )
65orrd 378 . . 3  |-  ( E. x  y  =  z  ->  ( A. x  x  =  y  \/  ( A. x  x  =  z  \/  y  =  z ) ) )
7 3orrot 979 . . . 4  |-  ( ( y  =  z  \/ 
A. x  x  =  y  \/  A. x  x  =  z )  <->  ( A. x  x  =  y  \/  A. x  x  =  z  \/  y  =  z )
)
8 3orass 976 . . . 4  |-  ( ( A. x  x  =  y  \/  A. x  x  =  z  \/  y  =  z )  <->  ( A. x  x  =  y  \/  ( A. x  x  =  z  \/  y  =  z
) ) )
97, 8bitri 249 . . 3  |-  ( ( y  =  z  \/ 
A. x  x  =  y  \/  A. x  x  =  z )  <->  ( A. x  x  =  y  \/  ( A. x  x  =  z  \/  y  =  z
) ) )
106, 9sylibr 212 . 2  |-  ( E. x  y  =  z  ->  ( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z ) )
11 19.8a 1806 . . 3  |-  ( y  =  z  ->  E. x  y  =  z )
12 ax6e 1971 . . . . 5  |-  E. x  x  =  z
13 ax-7 1739 . . . . . 6  |-  ( x  =  y  ->  (
x  =  z  -> 
y  =  z ) )
1413com12 31 . . . . 5  |-  ( x  =  z  ->  (
x  =  y  -> 
y  =  z ) )
1512, 14eximii 1637 . . . 4  |-  E. x
( x  =  y  ->  y  =  z )
161519.35i 1666 . . 3  |-  ( A. x  x  =  y  ->  E. x  y  =  z )
17 ax6e 1971 . . . . 5  |-  E. x  x  =  y
1817, 13eximii 1637 . . . 4  |-  E. x
( x  =  z  ->  y  =  z )
191819.35i 1666 . . 3  |-  ( A. x  x  =  z  ->  E. x  y  =  z )
2011, 16, 193jaoi 1291 . 2  |-  ( ( y  =  z  \/ 
A. x  x  =  y  \/  A. x  x  =  z )  ->  E. x  y  =  z )
2110, 20impbii 188 1  |-  ( E. x  y  =  z  <-> 
( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972   A.wal 1377   E.wex 1596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-12 1803  ax-13 1968
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-ex 1597  df-nf 1600
This theorem is referenced by:  wl-nfeqfb  29917
  Copyright terms: Public domain W3C validator