Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dral1d Structured version   Visualization version   Unicode version

Theorem wl-dral1d 31876
Description: A version of dral1 2161 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a 
x  =  y,  A. x x  =  y or  ph antecedent. wl-equsal1i 31888 and nfdi 2001 show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019.)
Hypotheses
Ref Expression
wl-dral1d.1  |-  F/ x ph
wl-dral1d.2  |-  F/ y
ph
wl-dral1d.3  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
Assertion
Ref Expression
wl-dral1d  |-  ( ph  ->  ( A. x  x  =  y  ->  ( A. x ps  <->  A. y ch ) ) )

Proof of Theorem wl-dral1d
StepHypRef Expression
1 wl-dral1d.3 . . . . . . . 8  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
21com12 32 . . . . . . 7  |-  ( x  =  y  ->  ( ph  ->  ( ps  <->  ch )
) )
32pm5.74d 251 . . . . . 6  |-  ( x  =  y  ->  (
( ph  ->  ps )  <->  (
ph  ->  ch ) ) )
43sps 1945 . . . . 5  |-  ( A. x  x  =  y  ->  ( ( ph  ->  ps )  <->  ( ph  ->  ch ) ) )
54dral1 2161 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x (
ph  ->  ps )  <->  A. y
( ph  ->  ch )
) )
6 wl-dral1d.1 . . . . 5  |-  F/ x ph
7619.21 1989 . . . 4  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
8 wl-dral1d.2 . . . . 5  |-  F/ y
ph
9819.21 1989 . . . 4  |-  ( A. y ( ph  ->  ch )  <->  ( ph  ->  A. y ch ) )
105, 7, 93bitr3g 291 . . 3  |-  ( A. x  x  =  y  ->  ( ( ph  ->  A. x ps )  <->  ( ph  ->  A. y ch )
) )
1110pm5.74rd 252 . 2  |-  ( A. x  x  =  y  ->  ( ph  ->  ( A. x ps  <->  A. y ch ) ) )
1211com12 32 1  |-  ( ph  ->  ( A. x  x  =  y  ->  ( A. x ps  <->  A. y ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188   A.wal 1444   F/wnf 1669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-12 1935  ax-13 2093
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1666  df-nf 1670
This theorem is referenced by:  wl-cbvalnaed  31877
  Copyright terms: Public domain W3C validator