Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem7 Structured version   Unicode version

Theorem wl-ax11-lem7 31384
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem7  |-  ( A. x ( -.  A. x  x  =  y  /\  ph )  <->  ( -.  A. x  x  =  y  /\  A. x ph ) )

Proof of Theorem wl-ax11-lem7
StepHypRef Expression
1 nfna1 1931 . 2  |-  F/ x  -.  A. x  x  =  y
2119.28 1952 1  |-  ( A. x ( -.  A. x  x  =  y  /\  ph )  <->  ( -.  A. x  x  =  y  /\  A. x ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 367   A.wal 1403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-12 1878
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-nf 1638
This theorem is referenced by:  wl-ax11-lem8  31385
  Copyright terms: Public domain W3C validator