Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem5 Structured version   Visualization version   Unicode version

Theorem wl-ax11-lem5 31983
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem5  |-  ( A. u  u  =  y  ->  ( A. u [
u  /  y ]
ph 
<-> 
A. y ph )
)

Proof of Theorem wl-ax11-lem5
StepHypRef Expression
1 sbequ12r 2099 . . 3  |-  ( u  =  y  ->  ( [ u  /  y ] ph  <->  ph ) )
21sps 1963 . 2  |-  ( A. u  u  =  y  ->  ( [ u  / 
y ] ph  <->  ph ) )
32dral1 2174 1  |-  ( A. u  u  =  y  ->  ( A. u [
u  /  y ]
ph 
<-> 
A. y ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189   A.wal 1450   [wsb 1805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950  ax-13 2104
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806
This theorem is referenced by:  wl-ax11-lem6  31984
  Copyright terms: Public domain W3C validator