Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-aleq Structured version   Unicode version

Theorem wl-aleq 28293
Description: The semantics of  A. x
y  =  z. (Contributed by Wolf Lammen, 27-Apr-2018.)
Assertion
Ref Expression
wl-aleq  |-  ( A. x  y  =  z  <->  ( y  =  z  /\  ( A. x  x  =  y  <->  A. x  x  =  z ) ) )

Proof of Theorem wl-aleq
StepHypRef Expression
1 sp 1799 . . 3  |-  ( A. x  y  =  z  ->  y  =  z )
2 equequ2 1742 . . . . 5  |-  ( y  =  z  ->  (
x  =  y  <->  x  =  z ) )
32alimi 1609 . . . 4  |-  ( A. x  y  =  z  ->  A. x ( x  =  y  <->  x  =  z ) )
4 albi 1614 . . . 4  |-  ( A. x ( x  =  y  <->  x  =  z
)  ->  ( A. x  x  =  y  <->  A. x  x  =  z ) )
53, 4syl 16 . . 3  |-  ( A. x  y  =  z  ->  ( A. x  x  =  y  <->  A. x  x  =  z )
)
61, 5jca 529 . 2  |-  ( A. x  y  =  z  ->  ( y  =  z  /\  ( A. x  x  =  y  <->  A. x  x  =  z )
) )
7 ax-7 1733 . . . . . 6  |-  ( x  =  y  ->  (
x  =  z  -> 
y  =  z ) )
87al2imi 1611 . . . . 5  |-  ( A. x  x  =  y  ->  ( A. x  x  =  z  ->  A. x  y  =  z )
)
98a1dd 46 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x  x  =  z  ->  (
y  =  z  ->  A. x  y  =  z ) ) )
10 axc9 1999 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  ( y  =  z  ->  A. x  y  =  z )
) )
119, 10bija 355 . . 3  |-  ( ( A. x  x  =  y  <->  A. x  x  =  z )  ->  (
y  =  z  ->  A. x  y  =  z ) )
1211impcom 430 . 2  |-  ( ( y  =  z  /\  ( A. x  x  =  y  <->  A. x  x  =  z ) )  ->  A. x  y  =  z )
136, 12impbii 188 1  |-  ( A. x  y  =  z  <->  ( y  =  z  /\  ( A. x  x  =  y  <->  A. x  x  =  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-12 1797  ax-13 1948
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1592  df-nf 1595
This theorem is referenced by:  wl-nfeqfb  28295  wl-ax11-lem2  28327
  Copyright terms: Public domain W3C validator