MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem1 Structured version   Unicode version

Theorem wilthlem1 23478
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in  ZZ 
/  P ZZ are  1 and  -u 1  ==  P  -  1. (Note that from prmdiveq 14337,  ( N ^ ( P  - 
2 ) )  mod 
P is the modular inverse of  N in  ZZ  /  P ZZ. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 11627 . . . . . . . . . 10  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  ZZ )
21adantl 464 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ZZ )
3 peano2zm 10842 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
42, 3syl 16 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
54zcnd 10903 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  CC )
62peano2zd 10905 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
76zcnd 10903 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  CC )
85, 7mulcomd 9546 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
92zcnd 10903 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  CC )
10 ax-1cn 9479 . . . . . . 7  |-  1  e.  CC
11 subsq 12197 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N ^
2 )  -  (
1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  - 
1 ) ) )
129, 10, 11sylancl 660 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
139sqvald 12228 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N ^ 2 )  =  ( N  x.  N
) )
14 sq1 12184 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
1514a1i 11 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1 ^ 2 )  =  1 )
1613, 15oveq12d 6232 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  x.  N )  - 
1 ) )
178, 12, 163eqtr2d 2439 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  - 
1 ) )
1817breq2d 4392 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  P  ||  (
( N  x.  N
)  -  1 ) ) )
19 1e0p1 10941 . . . . . . . 8  |-  1  =  ( 0  +  1 )
2019oveq1i 6224 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
21 0z 10810 . . . . . . . 8  |-  0  e.  ZZ
22 fzp1ss 11671 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
2321, 22ax-mp 5 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
2420, 23eqsstri 3460 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
25 simpr 459 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 1 ... ( P  -  1 ) ) )
2624, 25sseldi 3428 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 0 ... ( P  -  1 ) ) )
2726biantrurd 506 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  x.  N )  - 
1 )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
2818, 27bitrd 253 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
29 simpl 455 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  Prime )
30 euclemma 14270 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  -  1 )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( P  ||  (
( N  -  1 )  x.  ( N  +  1 ) )  <-> 
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) ) ) )
3129, 4, 6, 30syl3anc 1226 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
32 prmnn 14241 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
33 fzm1ndvds 14059 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  N
)
3432, 33sylan 469 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  N )
35 eqid 2392 . . . . 5  |-  ( ( N ^ ( P  -  2 ) )  mod  P )  =  ( ( N ^
( P  -  2 ) )  mod  P
)
3635prmdiveq 14337 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3729, 2, 34, 36syl3anc 1226 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3828, 31, 373bitr3rd 284 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
3929, 32syl 16 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  NN )
40 1zzd 10830 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  e.  ZZ )
41 moddvds 14014 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
4239, 2, 40, 41syl3anc 1226 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
43 elfznn 11653 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  NN )
4443adantl 464 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN )
4544nnred 10485 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  RR )
4639nnrpd 11193 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR+ )
4744nnnn0d 10787 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN0 )
4847nn0ge0d 10790 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  N )
49 elfzle2 11629 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  <_  ( P  -  1 ) )
5049adantl 464 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <_  ( P  -  1 ) )
51 prmz 14242 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
52 zltlem1 10851 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  <  P  <->  N  <_  ( P  - 
1 ) ) )
531, 51, 52syl2anr 476 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  <  P  <->  N  <_  ( P  -  1 ) ) )
5450, 53mpbird 232 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <  P )
55 modid 11940 . . . . . 6  |-  ( ( ( N  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  N  /\  N  <  P ) )  ->  ( N  mod  P )  =  N )
5645, 46, 48, 54, 55syl22anc 1227 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  mod  P )  =  N )
5739nnred 10485 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR )
58 prmuz2 14256 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
5929, 58syl 16 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
60 eluz2b2 11091 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
6160simprbi 462 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6259, 61syl 16 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  <  P )
63 1mod 11948 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
6457, 62, 63syl2anc 659 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  mod  P )  =  1 )
6556, 64eqeq12d 2414 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  N  = 
1 ) )
6642, 65bitr3d 255 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  - 
1 )  <->  N  = 
1 ) )
6740znegcld 10904 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  ZZ )
68 moddvds 14014 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  -u 1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
6939, 2, 67, 68syl3anc 1226 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
7039nncnd 10486 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  CC )
7170mulid2d 9543 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  x.  P )  =  P )
7271oveq2d 6230 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( -u 1  +  P ) )
73 neg1cn 10574 . . . . . . . . 9  |-  -u 1  e.  CC
74 addcom 9695 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  P  e.  CC )  ->  ( -u 1  +  P )  =  ( P  +  -u 1
) )
7573, 70, 74sylancr 661 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  P )  =  ( P  +  -u 1 ) )
76 negsub 9798 . . . . . . . . 9  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  +  -u
1 )  =  ( P  -  1 ) )
7770, 10, 76sylancl 660 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  +  -u 1 )  =  ( P  - 
1 ) )
7872, 75, 773eqtrd 2437 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( P  - 
1 ) )
7978oveq1d 6229 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( ( P  -  1 )  mod 
P ) )
80 neg1rr 10575 . . . . . . . 8  |-  -u 1  e.  RR
8180a1i 11 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  RR )
82 modcyc 11951 . . . . . . 7  |-  ( (
-u 1  e.  RR  /\  P  e.  RR+  /\  1  e.  ZZ )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
8381, 46, 40, 82syl3anc 1226 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
84 peano2rem 9817 . . . . . . . 8  |-  ( P  e.  RR  ->  ( P  -  1 )  e.  RR )
8557, 84syl 16 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  RR )
86 nnm1nn0 10772 . . . . . . . . 9  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
8739, 86syl 16 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  NN0 )
8887nn0ge0d 10790 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  ( P  -  1 ) )
8957ltm1d 10412 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  <  P )
90 modid 11940 . . . . . . 7  |-  ( ( ( ( P  - 
1 )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  1 )  /\  ( P  - 
1 )  <  P
) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9185, 46, 88, 89, 90syl22anc 1227 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9279, 83, 913eqtr3d 2441 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  mod  P )  =  ( P  - 
1 ) )
9356, 92eqeq12d 2414 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  N  =  ( P  - 
1 ) ) )
94 subneg 9799 . . . . . 6  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  -u 1
)  =  ( N  +  1 ) )
959, 10, 94sylancl 660 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  -u 1 )  =  ( N  + 
1 ) )
9695breq2d 4392 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  -  -u 1 )  <->  P  ||  ( N  +  1 ) ) )
9769, 93, 963bitr3rd 284 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  + 
1 )  <->  N  =  ( P  -  1
) ) )
9866, 97orbi12d 707 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) )  <->  ( N  =  1  \/  N  =  ( P  -  1 ) ) ) )
9938, 98bitrd 253 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1399    e. wcel 1836    C_ wss 3402   class class class wbr 4380   ` cfv 5509  (class class class)co 6214   CCcc 9419   RRcr 9420   0cc0 9421   1c1 9422    + caddc 9424    x. cmul 9426    < clt 9557    <_ cle 9558    - cmin 9736   -ucneg 9737   NNcn 10470   2c2 10520   NN0cn0 10730   ZZcz 10799   ZZ>=cuz 11019   RR+crp 11157   ...cfz 11611    mod cmo 11915   ^cexp 12088    || cdvds 14007   Primecprime 14238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-cnex 9477  ax-resscn 9478  ax-1cn 9479  ax-icn 9480  ax-addcl 9481  ax-addrcl 9482  ax-mulcl 9483  ax-mulrcl 9484  ax-mulcom 9485  ax-addass 9486  ax-mulass 9487  ax-distr 9488  ax-i2m1 9489  ax-1ne0 9490  ax-1rid 9491  ax-rnegex 9492  ax-rrecex 9493  ax-cnre 9494  ax-pre-lttri 9495  ax-pre-lttrn 9496  ax-pre-ltadd 9497  ax-pre-mulgt0 9498  ax-pre-sup 9499
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-pss 3418  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-tp 3962  df-op 3964  df-uni 4177  df-int 4213  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-tr 4474  df-eprel 4718  df-id 4722  df-po 4727  df-so 4728  df-fr 4765  df-we 4767  df-ord 4808  df-on 4809  df-lim 4810  df-suc 4811  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-om 6618  df-1st 6717  df-2nd 6718  df-recs 6978  df-rdg 7012  df-1o 7066  df-2o 7067  df-oadd 7070  df-er 7247  df-map 7358  df-en 7454  df-dom 7455  df-sdom 7456  df-fin 7457  df-sup 7834  df-card 8251  df-cda 8479  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-le 9563  df-sub 9738  df-neg 9739  df-div 10142  df-nn 10471  df-2 10529  df-3 10530  df-n0 10731  df-z 10800  df-uz 11020  df-rp 11158  df-fz 11612  df-fzo 11736  df-fl 11847  df-mod 11916  df-seq 12030  df-exp 12089  df-hash 12327  df-cj 12953  df-re 12954  df-im 12955  df-sqrt 13089  df-abs 13090  df-dvds 14008  df-gcd 14166  df-prm 14239  df-phi 14317
This theorem is referenced by:  wilthlem2  23479
  Copyright terms: Public domain W3C validator