MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem1 Unicode version

Theorem wilthlem1 20138
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in  ZZ 
/  P ZZ are  1 and  -u 1  ==  P  -  1. (Note that from prmdiveq 12728,  ( N ^ ( P  - 
2 ) )  mod 
P is the modular inverse of  N in  ZZ  /  P ZZ. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 10676 . . . . . . . . . 10  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  ZZ )
21adantl 454 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ZZ )
3 peano2zm 9941 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
42, 3syl 17 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
54zcnd 9997 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  CC )
62peano2zd 9999 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
76zcnd 9997 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  CC )
85, 7mulcomd 8736 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
92zcnd 9997 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  CC )
10 ax-1cn 8675 . . . . . . 7  |-  1  e.  CC
11 subsq 11088 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N ^
2 )  -  (
1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  - 
1 ) ) )
129, 10, 11sylancl 646 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
139sqvald 11120 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N ^ 2 )  =  ( N  x.  N
) )
14 sq1 11076 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
1514a1i 12 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1 ^ 2 )  =  1 )
1613, 15oveq12d 5728 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  x.  N )  - 
1 ) )
178, 12, 163eqtr2d 2291 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  - 
1 ) )
1817breq2d 3932 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  P  ||  (
( N  x.  N
)  -  1 ) ) )
19 1e0p1 10031 . . . . . . . 8  |-  1  =  ( 0  +  1 )
2019oveq1i 5720 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
21 0z 9914 . . . . . . . 8  |-  0  e.  ZZ
22 fzp1ss 10715 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
2321, 22ax-mp 10 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
2420, 23eqsstri 3129 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
25 simpr 449 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 1 ... ( P  -  1 ) ) )
2624, 25sseldi 3101 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 0 ... ( P  -  1 ) ) )
2726biantrurd 496 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  x.  N )  - 
1 )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
2818, 27bitrd 246 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
29 simpl 445 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  Prime )
30 euclemma 12661 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  -  1 )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( P  ||  (
( N  -  1 )  x.  ( N  +  1 ) )  <-> 
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) ) ) )
3129, 4, 6, 30syl3anc 1187 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
32 prmnn 12636 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
33 fzm1ndvds 12454 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  N
)
3432, 33sylan 459 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  N )
35 eqid 2253 . . . . 5  |-  ( ( N ^ ( P  -  2 ) )  mod  P )  =  ( ( N ^
( P  -  2 ) )  mod  P
)
3635prmdiveq 12728 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3729, 2, 34, 36syl3anc 1187 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3828, 31, 373bitr3rd 277 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
3929, 32syl 17 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  NN )
40 1z 9932 . . . . . 6  |-  1  e.  ZZ
4140a1i 12 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  e.  ZZ )
42 moddvds 12412 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
4339, 2, 41, 42syl3anc 1187 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
44 elfznn 10697 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  NN )
4544adantl 454 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN )
4645nnred 9641 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  RR )
4739nnrpd 10268 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR+ )
4845nnnn0d 9897 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN0 )
4948nn0ge0d 9900 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  N )
50 elfzle2 10678 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  <_  ( P  -  1 ) )
5150adantl 454 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <_  ( P  -  1 ) )
52 prmz 12635 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
53 zltlem1 9949 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  <  P  <->  N  <_  ( P  - 
1 ) ) )
541, 52, 53syl2anr 466 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  <  P  <->  N  <_  ( P  -  1 ) ) )
5551, 54mpbird 225 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <  P )
56 modid 10871 . . . . . 6  |-  ( ( ( N  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  N  /\  N  <  P ) )  ->  ( N  mod  P )  =  N )
5746, 47, 49, 55, 56syl22anc 1188 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  mod  P )  =  N )
5839nnred 9641 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR )
59 prmuz2 12650 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6029, 59syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
61 eluz2b2 10169 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
6261simprbi 452 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6360, 62syl 17 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  <  P )
64 1mod 10874 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
6558, 63, 64syl2anc 645 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  mod  P )  =  1 )
6657, 65eqeq12d 2267 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  N  = 
1 ) )
6743, 66bitr3d 248 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  - 
1 )  <->  N  = 
1 ) )
6841znegcld 9998 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  ZZ )
69 moddvds 12412 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  -u 1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
7039, 2, 68, 69syl3anc 1187 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
7139nncnd 9642 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  CC )
7271mulid2d 8733 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  x.  P )  =  P )
7372oveq2d 5726 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( -u 1  +  P ) )
74 neg1cn 9693 . . . . . . . . 9  |-  -u 1  e.  CC
75 addcom 8878 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  P  e.  CC )  ->  ( -u 1  +  P )  =  ( P  +  -u 1
) )
7674, 71, 75sylancr 647 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  P )  =  ( P  +  -u 1 ) )
77 negsub 8975 . . . . . . . . 9  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  +  -u
1 )  =  ( P  -  1 ) )
7871, 10, 77sylancl 646 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  +  -u 1 )  =  ( P  - 
1 ) )
7973, 76, 783eqtrd 2289 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( P  - 
1 ) )
8079oveq1d 5725 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( ( P  -  1 )  mod 
P ) )
81 1re 8717 . . . . . . . . 9  |-  1  e.  RR
8281renegcli 8988 . . . . . . . 8  |-  -u 1  e.  RR
8382a1i 12 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  RR )
84 modcyc 10877 . . . . . . 7  |-  ( (
-u 1  e.  RR  /\  P  e.  RR+  /\  1  e.  ZZ )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
8583, 47, 41, 84syl3anc 1187 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
86 peano2rem 8993 . . . . . . . 8  |-  ( P  e.  RR  ->  ( P  -  1 )  e.  RR )
8758, 86syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  RR )
88 nnm1nn0 9884 . . . . . . . . 9  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
8939, 88syl 17 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  NN0 )
9089nn0ge0d 9900 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  ( P  -  1 ) )
9158ltm1d 9569 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  <  P )
92 modid 10871 . . . . . . 7  |-  ( ( ( ( P  - 
1 )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  1 )  /\  ( P  - 
1 )  <  P
) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9387, 47, 90, 91, 92syl22anc 1188 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9480, 85, 933eqtr3d 2293 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  mod  P )  =  ( P  - 
1 ) )
9557, 94eqeq12d 2267 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  N  =  ( P  - 
1 ) ) )
96 subneg 8976 . . . . . 6  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  -u 1
)  =  ( N  +  1 ) )
979, 10, 96sylancl 646 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  -u 1 )  =  ( N  + 
1 ) )
9897breq2d 3932 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  -  -u 1 )  <->  P  ||  ( N  +  1 ) ) )
9970, 95, 983bitr3rd 277 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  + 
1 )  <->  N  =  ( P  -  1
) ) )
10067, 99orbi12d 693 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) )  <->  ( N  =  1  \/  N  =  ( P  -  1 ) ) ) )
10138, 100bitrd 246 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3078   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917   -ucneg 8918   NNcn 9626   2c2 9675   NN0cn0 9844   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   ...cfz 10660    mod cmo 10851   ^cexp 10982    || cdivides 12405   Primecprime 12632
This theorem is referenced by:  wilthlem2  20139
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-divides 12406  df-gcd 12560  df-prime 12633  df-phi 12708
  Copyright terms: Public domain W3C validator