MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem1 Structured version   Unicode version

Theorem wilthlem1 22532
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in  ZZ 
/  P ZZ are  1 and  -u 1  ==  P  -  1. (Note that from prmdiveq 13972,  ( N ^ ( P  - 
2 ) )  mod 
P is the modular inverse of  N in  ZZ  /  P ZZ. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 11563 . . . . . . . . . 10  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  ZZ )
21adantl 466 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ZZ )
3 peano2zm 10792 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
42, 3syl 16 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
54zcnd 10852 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  CC )
62peano2zd 10854 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
76zcnd 10852 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  CC )
85, 7mulcomd 9511 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
92zcnd 10852 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  CC )
10 ax-1cn 9444 . . . . . . 7  |-  1  e.  CC
11 subsq 12083 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N ^
2 )  -  (
1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  - 
1 ) ) )
129, 10, 11sylancl 662 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
139sqvald 12115 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N ^ 2 )  =  ( N  x.  N
) )
14 sq1 12070 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
1514a1i 11 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1 ^ 2 )  =  1 )
1613, 15oveq12d 6211 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  x.  N )  - 
1 ) )
178, 12, 163eqtr2d 2498 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  - 
1 ) )
1817breq2d 4405 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  P  ||  (
( N  x.  N
)  -  1 ) ) )
19 1e0p1 10887 . . . . . . . 8  |-  1  =  ( 0  +  1 )
2019oveq1i 6203 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
21 0z 10761 . . . . . . . 8  |-  0  e.  ZZ
22 fzp1ss 11616 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
2321, 22ax-mp 5 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
2420, 23eqsstri 3487 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
25 simpr 461 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 1 ... ( P  -  1 ) ) )
2624, 25sseldi 3455 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 0 ... ( P  -  1 ) ) )
2726biantrurd 508 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  x.  N )  - 
1 )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
2818, 27bitrd 253 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
29 simpl 457 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  Prime )
30 euclemma 13905 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  -  1 )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( P  ||  (
( N  -  1 )  x.  ( N  +  1 ) )  <-> 
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) ) ) )
3129, 4, 6, 30syl3anc 1219 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
32 prmnn 13877 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
33 fzm1ndvds 13696 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  N
)
3432, 33sylan 471 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  N )
35 eqid 2451 . . . . 5  |-  ( ( N ^ ( P  -  2 ) )  mod  P )  =  ( ( N ^
( P  -  2 ) )  mod  P
)
3635prmdiveq 13972 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3729, 2, 34, 36syl3anc 1219 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3828, 31, 373bitr3rd 284 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
3929, 32syl 16 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  NN )
40 1zzd 10781 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  e.  ZZ )
41 moddvds 13653 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
4239, 2, 40, 41syl3anc 1219 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
43 elfznn 11588 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  NN )
4443adantl 466 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN )
4544nnred 10441 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  RR )
4639nnrpd 11130 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR+ )
4744nnnn0d 10740 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN0 )
4847nn0ge0d 10743 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  N )
49 elfzle2 11565 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  <_  ( P  -  1 ) )
5049adantl 466 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <_  ( P  -  1 ) )
51 prmz 13878 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
52 zltlem1 10801 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  <  P  <->  N  <_  ( P  - 
1 ) ) )
531, 51, 52syl2anr 478 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  <  P  <->  N  <_  ( P  -  1 ) ) )
5450, 53mpbird 232 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <  P )
55 modid 11842 . . . . . 6  |-  ( ( ( N  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  N  /\  N  <  P ) )  ->  ( N  mod  P )  =  N )
5645, 46, 48, 54, 55syl22anc 1220 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  mod  P )  =  N )
5739nnred 10441 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR )
58 prmuz2 13892 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
5929, 58syl 16 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
60 eluz2b2 11031 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
6160simprbi 464 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6259, 61syl 16 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  <  P )
63 1mod 11850 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
6457, 62, 63syl2anc 661 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  mod  P )  =  1 )
6556, 64eqeq12d 2473 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  N  = 
1 ) )
6642, 65bitr3d 255 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  - 
1 )  <->  N  = 
1 ) )
6740znegcld 10853 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  ZZ )
68 moddvds 13653 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  -u 1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
6939, 2, 67, 68syl3anc 1219 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
7039nncnd 10442 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  CC )
7170mulid2d 9508 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  x.  P )  =  P )
7271oveq2d 6209 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( -u 1  +  P ) )
73 neg1cn 10529 . . . . . . . . 9  |-  -u 1  e.  CC
74 addcom 9659 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  P  e.  CC )  ->  ( -u 1  +  P )  =  ( P  +  -u 1
) )
7573, 70, 74sylancr 663 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  P )  =  ( P  +  -u 1 ) )
76 negsub 9761 . . . . . . . . 9  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  +  -u
1 )  =  ( P  -  1 ) )
7770, 10, 76sylancl 662 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  +  -u 1 )  =  ( P  - 
1 ) )
7872, 75, 773eqtrd 2496 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( P  - 
1 ) )
7978oveq1d 6208 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( ( P  -  1 )  mod 
P ) )
80 neg1rr 10530 . . . . . . . 8  |-  -u 1  e.  RR
8180a1i 11 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  RR )
82 modcyc 11853 . . . . . . 7  |-  ( (
-u 1  e.  RR  /\  P  e.  RR+  /\  1  e.  ZZ )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
8381, 46, 40, 82syl3anc 1219 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
84 peano2rem 9779 . . . . . . . 8  |-  ( P  e.  RR  ->  ( P  -  1 )  e.  RR )
8557, 84syl 16 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  RR )
86 nnm1nn0 10725 . . . . . . . . 9  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
8739, 86syl 16 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  NN0 )
8887nn0ge0d 10743 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  ( P  -  1 ) )
8957ltm1d 10369 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  <  P )
90 modid 11842 . . . . . . 7  |-  ( ( ( ( P  - 
1 )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  1 )  /\  ( P  - 
1 )  <  P
) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9185, 46, 88, 89, 90syl22anc 1220 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9279, 83, 913eqtr3d 2500 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  mod  P )  =  ( P  - 
1 ) )
9356, 92eqeq12d 2473 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  N  =  ( P  - 
1 ) ) )
94 subneg 9762 . . . . . 6  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  -u 1
)  =  ( N  +  1 ) )
959, 10, 94sylancl 662 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  -u 1 )  =  ( N  + 
1 ) )
9695breq2d 4405 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  -  -u 1 )  <->  P  ||  ( N  +  1 ) ) )
9769, 93, 963bitr3rd 284 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  + 
1 )  <->  N  =  ( P  -  1
) ) )
9866, 97orbi12d 709 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) )  <->  ( N  =  1  \/  N  =  ( P  -  1 ) ) ) )
9938, 98bitrd 253 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3429   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   CCcc 9384   RRcr 9385   0cc0 9386   1c1 9387    + caddc 9389    x. cmul 9391    < clt 9522    <_ cle 9523    - cmin 9699   -ucneg 9700   NNcn 10426   2c2 10475   NN0cn0 10683   ZZcz 10750   ZZ>=cuz 10965   RR+crp 11095   ...cfz 11547    mod cmo 11818   ^cexp 11975    || cdivides 13646   Primecprime 13874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-sup 7795  df-card 8213  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-n0 10684  df-z 10751  df-uz 10966  df-rp 11096  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-hash 12214  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-dvds 13647  df-gcd 13802  df-prm 13875  df-phi 13952
This theorem is referenced by:  wilthlem2  22533
  Copyright terms: Public domain W3C validator