Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem8 Structured version   Unicode version

Theorem wfrlem8 6998
 Description: Lemma for well-founded recursion. Compute the prececessor class for an minimal element of . (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6.1 wrecs
Assertion
Ref Expression
wfrlem8

Proof of Theorem wfrlem8
StepHypRef Expression
1 wfrlem6.1 . . . . 5 wrecs
21wfrdmss 6997 . . . 4
3 predpredss 5348 . . . 4
42, 3ax-mp 5 . . 3
54biantru 507 . 2
6 preddif 5367 . . . 4
76eqeq1i 2433 . . 3
8 ssdif0 3796 . . 3
97, 8bitr4i 255 . 2
10 eqss 3422 . 2
115, 9, 103bitr4i 280 1
 Colors of variables: wff setvar class Syntax hints:   wb 187   wa 370   wceq 1437   cdif 3376   wss 3379  c0 3704   cdm 4796  cpred 5341  wrecscwrecs 6982 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-iota 5508  df-fun 5546  df-fn 5547  df-fv 5552  df-wrecs 6983 This theorem is referenced by:  wfrlem10  7000
 Copyright terms: Public domain W3C validator