Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfrlem6 Structured version   Unicode version

Theorem wfrlem6 28925
Description: Lemma for well-founded recursion. The definition generates a relationship. (Contributed by Scott Fenton, 8-Jun-2018.)
Hypothesis
Ref Expression
wfrlem6.1  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfrlem6  |-  Rel  F

Proof of Theorem wfrlem6
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reluni 5123 . . 3  |-  ( Rel  U. { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  <->  A. g  e.  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } Rel  g )
2 eqid 2467 . . . . 5  |-  { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  =  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
32wfrlem2 28921 . . . 4  |-  ( g  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  Fun  g )
4 funrel 5603 . . . 4  |-  ( Fun  g  ->  Rel  g )
53, 4syl 16 . . 3  |-  ( g  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  Rel  g )
61, 5mprgbir 2828 . 2  |-  Rel  U. { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
7 wfrlem6.1 . . . 4  |-  F  = wrecs ( R ,  A ,  G )
8 df-wrecs 28913 . . . 4  |- wrecs ( R ,  A ,  G
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) }
97, 8eqtri 2496 . . 3  |-  F  = 
U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
109releqi 5084 . 2  |-  ( Rel 
F  <->  Rel  U. { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } )
116, 10mpbir 209 1  |-  Rel  F
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814    C_ wss 3476   U.cuni 4245    |` cres 5001   Rel wrel 5004   Fun wfun 5580    Fn wfn 5581   ` cfv 5586   Predcpred 28820  wrecscwrecs 28912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594  df-pred 28821  df-wrecs 28913
This theorem is referenced by:  wfrlem11  28930
  Copyright terms: Public domain W3C validator