Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfrlem12 Structured version   Unicode version

Theorem wfrlem12 29571
Description: Lemma for well-founded recursion. Here, we compute the value of the recursive definition generator. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem11.1  |-  R  We  A
wfrlem11.2  |-  R Se  A
wfrlem11.3  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfrlem12  |-  ( y  e.  dom  F  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) )
Distinct variable groups:    y, A    y, G    y, R
Allowed substitution hint:    F( y)

Proof of Theorem wfrlem12
Dummy variables  f  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . 3  |-  y  e. 
_V
21eldm2 5211 . 2  |-  ( y  e.  dom  F  <->  E. z <. y ,  z >.  e.  F )
3 wfrlem11.3 . . . . . . 7  |-  F  = wrecs ( R ,  A ,  G )
4 df-wrecs 29553 . . . . . . 7  |- wrecs ( R ,  A ,  G
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) }
53, 4eqtri 2486 . . . . . 6  |-  F  = 
U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
65eleq2i 2535 . . . . 5  |-  ( <.
y ,  z >.  e.  F  <->  <. y ,  z
>.  e.  U. { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } )
7 eluniab 4262 . . . . 5  |-  ( <.
y ,  z >.  e.  U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  <->  E. f ( <. y ,  z >.  e.  f  /\  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) ) )
86, 7bitri 249 . . . 4  |-  ( <.
y ,  z >.  e.  F  <->  E. f ( <.
y ,  z >.  e.  f  /\  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
9 abid 2444 . . . . . . . 8  |-  ( f  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  <->  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )
10 elssuni 4281 . . . . . . . . 9  |-  ( f  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  f  C_  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) } )
1110, 5syl6sseqr 3546 . . . . . . . 8  |-  ( f  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  f  C_  F
)
129, 11sylbir 213 . . . . . . 7  |-  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
f  C_  F )
13 fnop 5690 . . . . . . . . . . . 12  |-  ( ( f  Fn  x  /\  <.
y ,  z >.  e.  f )  ->  y  e.  x )
1413ex 434 . . . . . . . . . . 11  |-  ( f  Fn  x  ->  ( <. y ,  z >.  e.  f  ->  y  e.  x ) )
15 rsp 2823 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( y  e.  x  ->  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )
1615impcom 430 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )
17 rsp 2823 . . . . . . . . . . . . . . . . . 18  |-  ( A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  ->  ( y  e.  x  ->  Pred ( R ,  A ,  y )  C_  x ) )
18 fndm 5686 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  x  ->  dom  f  =  x )
1918sseq2d 3527 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  Fn  x  ->  ( Pred ( R ,  A ,  y )  C_  dom  f  <->  Pred ( R ,  A ,  y )  C_  x ) )
2018eleq2d 2527 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  Fn  x  ->  (
y  e.  dom  f  <->  y  e.  x ) )
2119, 20anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  Fn  x  ->  (
( Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f )  <->  ( Pred ( R ,  A , 
y )  C_  x  /\  y  e.  x
) ) )
2221biimprd 223 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  Fn  x  ->  (
( Pred ( R ,  A ,  y )  C_  x  /\  y  e.  x )  ->  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) ) )
2322expd 436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  Fn  x  ->  ( Pred ( R ,  A ,  y )  C_  x  ->  ( y  e.  x  ->  ( Pred ( R ,  A , 
y )  C_  dom  f  /\  y  e.  dom  f ) ) ) )
2423impcom 430 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Pred ( R ,  A ,  y )  C_  x  /\  f  Fn  x )  ->  (
y  e.  x  -> 
( Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f ) ) )
25 wfrlem11.1 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  R  We  A
26 wfrlem11.2 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  R Se  A
2725, 26, 3wfrlem11 29570 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Fun  F
28 funssfv 5887 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  F  /\  f  C_  F  /\  y  e. 
dom  f )  -> 
( F `  y
)  =  ( f `
 y ) )
29283adant3l 1224 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( F `  y )  =  ( f `  y ) )
30 fun2ssres 5635 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Fun  F  /\  f  C_  F  /\  Pred ( R ,  A , 
y )  C_  dom  f )  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( f  |`  Pred ( R ,  A ,  y )
) )
31303adant3r 1225 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( F  |`  Pred ( R ,  A ,  y ) )  =  ( f  |`  Pred ( R ,  A ,  y ) ) )
3231fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) )
3329, 32eqeq12d 2479 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( ( F `
 y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) )  <->  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )
3433biimprd 223 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( ( f `
 y )  =  ( G `  (
f  |`  Pred ( R ,  A ,  y )
) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) )
3527, 34mp3an1 1311 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f ) )  ->  ( ( f `
 y )  =  ( G `  (
f  |`  Pred ( R ,  A ,  y )
) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) )
3635expcom 435 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f )  -> 
( f  C_  F  ->  ( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
3736com23 78 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f )  -> 
( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
3824, 37syl6com 35 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  x  ->  (
( Pred ( R ,  A ,  y )  C_  x  /\  f  Fn  x )  ->  (
( f `  y
)  =  ( G `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) )
3938expd 436 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  x  ->  ( Pred ( R ,  A ,  y )  C_  x  ->  ( f  Fn  x  ->  ( (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4039com34 83 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  x  ->  ( Pred ( R ,  A ,  y )  C_  x  ->  ( ( f `
 y )  =  ( G `  (
f  |`  Pred ( R ,  A ,  y )
) )  ->  (
f  Fn  x  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) ) ) )
4117, 40sylcom 29 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  ->  ( y  e.  x  ->  ( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
f  Fn  x  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) ) ) )
4241adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  ->  ( y  e.  x  ->  ( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( f  Fn  x  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4342com14 88 . . . . . . . . . . . . . . 15  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) )
4416, 43syl7 68 . . . . . . . . . . . . . 14  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( ( y  e.  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) )
4544exp4a 606 . . . . . . . . . . . . 13  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( y  e.  x  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) ) )
4645pm2.43d 48 . . . . . . . . . . . 12  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) )
4746com34 83 . . . . . . . . . . 11  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  ( A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4814, 47syld 44 . . . . . . . . . 10  |-  ( f  Fn  x  ->  ( <. y ,  z >.  e.  f  ->  ( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  ->  ( A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4948com12 31 . . . . . . . . 9  |-  ( <.
y ,  z >.  e.  f  ->  ( f  Fn  x  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  ( A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
50493impd 1210 . . . . . . . 8  |-  ( <.
y ,  z >.  e.  f  ->  ( ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) )
5150exlimdv 1725 . . . . . . 7  |-  ( <.
y ,  z >.  e.  f  ->  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) )
5212, 51mpdi 42 . . . . . 6  |-  ( <.
y ,  z >.  e.  f  ->  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) )
5352imp 429 . . . . 5  |-  ( (
<. y ,  z >.  e.  f  /\  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )
5453exlimiv 1723 . . . 4  |-  ( E. f ( <. y ,  z >.  e.  f  /\  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) )
558, 54sylbi 195 . . 3  |-  ( <.
y ,  z >.  e.  F  ->  ( F `
 y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) )
5655exlimiv 1723 . 2  |-  ( E. z <. y ,  z
>.  e.  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )
572, 56sylbi 195 1  |-  ( y  e.  dom  F  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442   A.wral 2807    C_ wss 3471   <.cop 4038   U.cuni 4251   Se wse 4845    We wwe 4846   dom cdm 5008    |` cres 5010   Fun wfun 5588    Fn wfn 5589   ` cfv 5594   Predcpred 29460  wrecscwrecs 29552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-pred 29461  df-wrecs 29553
This theorem is referenced by:  wfrlem14  29573  wfr2  29577
  Copyright terms: Public domain W3C validator