Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfrlem12 Structured version   Unicode version

Theorem wfrlem12 27686
Description: Lemma for well-founded recursion. Here, we compute the value of the recursive definition generator. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem11.1  |-  R  We  A
wfrlem11.2  |-  R Se  A
wfrlem11.3  |-  F  = wrecs ( R ,  A ,  G )
Assertion
Ref Expression
wfrlem12  |-  ( y  e.  dom  F  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) )
Distinct variable groups:    y, A    y, G    y, R
Allowed substitution hint:    F( y)

Proof of Theorem wfrlem12
Dummy variables  f  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2970 . . 3  |-  y  e. 
_V
21eldm2 5033 . 2  |-  ( y  e.  dom  F  <->  E. z <. y ,  z >.  e.  F )
3 wfrlem11.3 . . . . . . 7  |-  F  = wrecs ( R ,  A ,  G )
4 df-wrecs 27668 . . . . . . 7  |- wrecs ( R ,  A ,  G
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) }
53, 4eqtri 2458 . . . . . 6  |-  F  = 
U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
65eleq2i 2502 . . . . 5  |-  ( <.
y ,  z >.  e.  F  <->  <. y ,  z
>.  e.  U. { f  |  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } )
7 eluniab 4097 . . . . 5  |-  ( <.
y ,  z >.  e.  U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  <->  E. f ( <. y ,  z >.  e.  f  /\  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) ) )
86, 7bitri 249 . . . 4  |-  ( <.
y ,  z >.  e.  F  <->  E. f ( <.
y ,  z >.  e.  f  /\  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
9 abid 2426 . . . . . . . 8  |-  ( f  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  <->  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )
10 elssuni 4116 . . . . . . . . 9  |-  ( f  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  f  C_  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) } )
1110, 5syl6sseqr 3398 . . . . . . . 8  |-  ( f  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  f  C_  F
)
129, 11sylbir 213 . . . . . . 7  |-  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
f  C_  F )
13 fnop 5509 . . . . . . . . . . . 12  |-  ( ( f  Fn  x  /\  <.
y ,  z >.  e.  f )  ->  y  e.  x )
1413ex 434 . . . . . . . . . . 11  |-  ( f  Fn  x  ->  ( <. y ,  z >.  e.  f  ->  y  e.  x ) )
15 rsp 2771 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( y  e.  x  ->  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )
1615impcom 430 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )
17 rsp 2771 . . . . . . . . . . . . . . . . . 18  |-  ( A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  ->  ( y  e.  x  ->  Pred ( R ,  A ,  y )  C_  x ) )
18 fndm 5505 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  x  ->  dom  f  =  x )
1918sseq2d 3379 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  Fn  x  ->  ( Pred ( R ,  A ,  y )  C_  dom  f  <->  Pred ( R ,  A ,  y )  C_  x ) )
2018eleq2d 2505 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  Fn  x  ->  (
y  e.  dom  f  <->  y  e.  x ) )
2119, 20anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  Fn  x  ->  (
( Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f )  <->  ( Pred ( R ,  A , 
y )  C_  x  /\  y  e.  x
) ) )
2221biimprd 223 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  Fn  x  ->  (
( Pred ( R ,  A ,  y )  C_  x  /\  y  e.  x )  ->  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) ) )
2322expd 436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  Fn  x  ->  ( Pred ( R ,  A ,  y )  C_  x  ->  ( y  e.  x  ->  ( Pred ( R ,  A , 
y )  C_  dom  f  /\  y  e.  dom  f ) ) ) )
2423impcom 430 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Pred ( R ,  A ,  y )  C_  x  /\  f  Fn  x )  ->  (
y  e.  x  -> 
( Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f ) ) )
25 wfrlem11.1 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  R  We  A
26 wfrlem11.2 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  R Se  A
2725, 26, 3wfrlem11 27685 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Fun  F
28 funssfv 5700 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  F  /\  f  C_  F  /\  y  e. 
dom  f )  -> 
( F `  y
)  =  ( f `
 y ) )
29283adant3l 1214 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( F `  y )  =  ( f `  y ) )
30 fun2ssres 5454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Fun  F  /\  f  C_  F  /\  Pred ( R ,  A , 
y )  C_  dom  f )  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( f  |`  Pred ( R ,  A ,  y )
) )
31303adant3r 1215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( F  |`  Pred ( R ,  A ,  y ) )  =  ( f  |`  Pred ( R ,  A ,  y ) ) )
3231fveq2d 5690 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) )
3329, 32eqeq12d 2452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( ( F `
 y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) )  <->  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )
3433biimprd 223 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun  F  /\  f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_  dom  f  /\  y  e.  dom  f ) )  ->  ( ( f `
 y )  =  ( G `  (
f  |`  Pred ( R ,  A ,  y )
) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) )
3527, 34mp3an1 1301 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  C_  F  /\  ( Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f ) )  ->  ( ( f `
 y )  =  ( G `  (
f  |`  Pred ( R ,  A ,  y )
) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) )
3635expcom 435 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f )  -> 
( f  C_  F  ->  ( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
3736com23 78 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Pred ( R ,  A ,  y )  C_ 
dom  f  /\  y  e.  dom  f )  -> 
( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) )
3824, 37syl6com 35 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  x  ->  (
( Pred ( R ,  A ,  y )  C_  x  /\  f  Fn  x )  ->  (
( f `  y
)  =  ( G `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) )
3938expd 436 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  x  ->  ( Pred ( R ,  A ,  y )  C_  x  ->  ( f  Fn  x  ->  ( (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4039com34 83 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  x  ->  ( Pred ( R ,  A ,  y )  C_  x  ->  ( ( f `
 y )  =  ( G `  (
f  |`  Pred ( R ,  A ,  y )
) )  ->  (
f  Fn  x  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) ) ) )
4117, 40sylcom 29 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  ->  ( y  e.  x  ->  ( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
f  Fn  x  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) ) ) )
4241adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  ->  ( y  e.  x  ->  ( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( f  Fn  x  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4342com14 88 . . . . . . . . . . . . . . 15  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) )
4416, 43syl7 68 . . . . . . . . . . . . . 14  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( ( y  e.  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) )
4544exp4a 606 . . . . . . . . . . . . 13  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( y  e.  x  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) ) )
4645pm2.43d 48 . . . . . . . . . . . 12  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) )  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  (
f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) ) ) ) ) )
4746com34 83 . . . . . . . . . . 11  |-  ( f  Fn  x  ->  (
y  e.  x  -> 
( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  ( A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4814, 47syld 44 . . . . . . . . . 10  |-  ( f  Fn  x  ->  ( <. y ,  z >.  e.  f  ->  ( ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  ->  ( A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
4948com12 31 . . . . . . . . 9  |-  ( <.
y ,  z >.  e.  f  ->  ( f  Fn  x  ->  (
( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  ->  ( A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  Pred ( R ,  A ,  y ) ) )  ->  ( f  C_  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) ) ) ) )
50493impd 1201 . . . . . . . 8  |-  ( <.
y ,  z >.  e.  f  ->  ( ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) )
5150exlimdv 1690 . . . . . . 7  |-  ( <.
y ,  z >.  e.  f  ->  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( f  C_  F  ->  ( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) ) )
5212, 51mpdi 42 . . . . . 6  |-  ( <.
y ,  z >.  e.  f  ->  ( E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) ) )
5352imp 429 . . . . 5  |-  ( (
<. y ,  z >.  e.  f  /\  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )
5453exlimiv 1688 . . . 4  |-  ( E. f ( <. y ,  z >.  e.  f  /\  E. x ( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) )
558, 54sylbi 195 . . 3  |-  ( <.
y ,  z >.  e.  F  ->  ( F `
 y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) )
5655exlimiv 1688 . 2  |-  ( E. z <. y ,  z
>.  e.  F  ->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )
572, 56sylbi 195 1  |-  ( y  e.  dom  F  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2424   A.wral 2710    C_ wss 3323   <.cop 3878   U.cuni 4086   Se wse 4672    We wwe 4673   dom cdm 4835    |` cres 4837   Fun wfun 5407    Fn wfn 5408   ` cfv 5413   Predcpred 27575  wrecscwrecs 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-fv 5421  df-pred 27576  df-wrecs 27668
This theorem is referenced by:  wfrlem14  27688  wfr2  27692
  Copyright terms: Public domain W3C validator