Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfrlem11 Unicode version

Theorem wfrlem11 25480
 Description: Lemma for well-founded recursion. The union of all acceptable functions is a function. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem11.1
wfrlem11.2 Se
wfrlem11.3
wfrlem11.4
Assertion
Ref Expression
wfrlem11
Distinct variable groups:   ,,,   ,   ,,,   ,,,
Allowed substitution hints:   (,,)   (,)

Proof of Theorem wfrlem11
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem11.3 . . 3
2 wfrlem11.4 . . 3
31, 2wfrlem6 25475 . 2
42eleq2i 2468 . . . . . . . . 9
5 eluni 3978 . . . . . . . . 9
64, 5bitri 241 . . . . . . . 8
7 df-br 4173 . . . . . . . 8
8 df-br 4173 . . . . . . . . . 10
98anbi1i 677 . . . . . . . . 9
109exbii 1589 . . . . . . . 8
116, 7, 103bitr4i 269 . . . . . . 7
122eleq2i 2468 . . . . . . . . 9
13 eluni 3978 . . . . . . . . 9
1412, 13bitri 241 . . . . . . . 8
15 df-br 4173 . . . . . . . 8
16 df-br 4173 . . . . . . . . . 10
1716anbi1i 677 . . . . . . . . 9
1817exbii 1589 . . . . . . . 8
1914, 15, 183bitr4i 269 . . . . . . 7
2011, 19anbi12i 679 . . . . . 6
21 eeanv 1933 . . . . . 6
2220, 21bitr4i 244 . . . . 5
23 wfrlem11.1 . . . . . . . . 9
24 wfrlem11.2 . . . . . . . . 9 Se
2523, 24, 1wfrlem5 25474 . . . . . . . 8
2625impcom 420 . . . . . . 7
2726an4s 800 . . . . . 6
2827exlimivv 1642 . . . . 5
2922, 28sylbi 188 . . . 4
3029ax-gen 1552 . . 3
3130gen2 1553 . 2
32 dffun2 5423 . 2
333, 31, 32mpbir2an 887 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936  wal 1546  wex 1547   wceq 1649   wcel 1721  cab 2390  wral 2666   wss 3280  cop 3777  cuni 3975   class class class wbr 4172   Se wse 4499   wwe 4500   cres 4839   wrel 4842   wfun 5407   wfn 5408  cfv 5413  cpred 25381 This theorem is referenced by:  wfrlem12  25481  wfrlem13  25482  wfr1  25486 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421  df-pred 25382
 Copyright terms: Public domain W3C validator