Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfr3g Structured version   Unicode version

Theorem wfr3g 27890
Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Distinct variable groups:    y, A    y, F    y, G    y, H    y, R

Proof of Theorem wfr3g
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2955 . . . . . . 7  |-  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  <->  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
2 fveq2 5802 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
3 fveq2 5802 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( G `  z )  =  ( G `  w ) )
42, 3eqeq12d 2476 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  w )  =  ( G `  w ) ) )
54imbi2d 316 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) ) ) )
6 nfv 1674 . . . . . . . . . . . 12  |-  F/ w
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
76ra4 3390 . . . . . . . . . . 11  |-  ( A. w  e.  Pred  ( R ,  A ,  z ) ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
8 fveq2 5802 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
9 predeq3 27796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
109reseq2d 5221 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( F  |`  Pred ( R ,  A ,  z )
) )
1110fveq2d 5806 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( F  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) )
128, 11eqeq12d 2476 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  <->  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) ) )
13 fveq2 5802 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
149reseq2d 5221 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( G  |`  Pred ( R ,  A ,  y )
)  =  ( G  |`  Pred ( R ,  A ,  z )
) )
1514fveq2d 5806 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( G  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
1613, 15eqeq12d 2476 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( G `  y
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  y ) ) )  <->  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) ) )
1712, 16anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) ) )
1817rspcva 3177 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) )
19 predss 27799 . . . . . . . . . . . . . . . . . . . . . . 23  |-  Pred ( R ,  A , 
z )  C_  A
20 fvreseq 5917 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  Pred ( R ,  A ,  z )  C_  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2119, 20mpan2 671 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2221biimpar 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) ) )
2322eqcomd 2462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( G  |`  Pred ( R ,  A ,  z ) )  =  ( F  |`  Pred ( R ,  A ,  z ) ) )
2423fveq2d 5806 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )
25 eqtr3 2482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )
2625ancoms 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
27 eqtr3 2482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F `  z
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) )
2827ex 434 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  ->  ( F `  z )  =  ( G `  z ) ) )
2926, 28syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3029expimpd 603 . . . . . . . . . . . . . . . . . . 19  |-  ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  ->  (
( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3124, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( ( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) ) )
3231com12 31 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3332expd 436 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( F  Fn  A  /\  G  Fn  A
)  ->  ( A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w )  ->  ( F `  z )  =  ( G `  z ) ) ) )
3418, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
)  ->  ( F `  z )  =  ( G `  z ) ) ) )
3534ex 434 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  ( A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3635com23 78 . . . . . . . . . . . . 13  |-  ( z  e.  A  ->  (
( F  Fn  A  /\  G  Fn  A
)  ->  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3736impd 431 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
3837a2d 26 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
397, 38syl5 32 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  ->  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
405, 39wfis2g 27841 . . . . . . . . 9  |-  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
41 r19.21v 2909 . . . . . . . . 9  |-  ( A. z  e.  A  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4240, 41sylib 196 . . . . . . . 8  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4342com12 31 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
441, 43sylan2br 476 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4544an4s 822 . . . . 5  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4645com12 31 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
47463impib 1186 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) )
48 eqid 2454 . . 3  |-  A  =  A
4947, 48jctil 537 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
50 eqfnfv2 5910 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5150ad2ant2r 746 . . 3  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
52513adant1 1006 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5349, 52mpbird 232 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799    C_ wss 3439   Se wse 4788    We wwe 4789    |` cres 4953    Fn wfn 5524   ` cfv 5529   Predcpred 27791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-fv 5537  df-pred 27792
This theorem is referenced by:  wfrlem5  27895  wfr3  27909
  Copyright terms: Public domain W3C validator