Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfi Unicode version

Theorem wfi 25421
Description: The Principle of Well-Founded Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if  B is a subclass of a well-ordered class  A with the property that every element of  B whose inital segment is included in 
A is itself equal to  A. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
wfi  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
Distinct variable groups:    y, A    y, B    y, R

Proof of Theorem wfi
StepHypRef Expression
1 ssdif0 3646 . . . . . . 7  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
21necon3bbii 2598 . . . . . 6  |-  ( -.  A  C_  B  <->  ( A  \  B )  =/=  (/) )
3 difss 3434 . . . . . . 7  |-  ( A 
\  B )  C_  A
4 tz6.26 25419 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) ) )  ->  E. y  e.  ( A  \  B )
Pred ( R , 
( A  \  B
) ,  y )  =  (/) )
5 eldif 3290 . . . . . . . . . . . . 13  |-  ( y  e.  ( A  \  B )  <->  ( y  e.  A  /\  -.  y  e.  B ) )
65anbi1i 677 . . . . . . . . . . . 12  |-  ( ( y  e.  ( A 
\  B )  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( ( y  e.  A  /\  -.  y  e.  B )  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) )
7 anass 631 . . . . . . . . . . . 12  |-  ( ( ( y  e.  A  /\  -.  y  e.  B
)  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( y  e.  A  /\  ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) ) )
8 ancom 438 . . . . . . . . . . . . . 14  |-  ( ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) )  <->  ( Pred ( R ,  ( A 
\  B ) ,  y )  =  (/)  /\ 
-.  y  e.  B
) )
9 indif2 3544 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' R " { y } )  i^i  ( A  \  B ) )  =  ( ( ( `' R " { y } )  i^i  A
)  \  B )
10 df-pred 25382 . . . . . . . . . . . . . . . . . . 19  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( ( A  \  B )  i^i  ( `' R " { y } ) )
11 incom 3493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  \  B )  i^i  ( `' R " { y } ) )  =  ( ( `' R " { y } )  i^i  ( A  \  B ) )
1210, 11eqtri 2424 . . . . . . . . . . . . . . . . . 18  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( ( `' R " { y } )  i^i  ( A  \  B ) )
13 df-pred 25382 . . . . . . . . . . . . . . . . . . . 20  |-  Pred ( R ,  A , 
y )  =  ( A  i^i  ( `' R " { y } ) )
14 incom 3493 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  i^i  ( `' R " { y } ) )  =  ( ( `' R " { y } )  i^i  A
)
1513, 14eqtri 2424 . . . . . . . . . . . . . . . . . . 19  |-  Pred ( R ,  A , 
y )  =  ( ( `' R " { y } )  i^i  A )
1615difeq1i 3421 . . . . . . . . . . . . . . . . . 18  |-  ( Pred ( R ,  A ,  y )  \  B )  =  ( ( ( `' R " { y } )  i^i  A )  \  B )
179, 12, 163eqtr4i 2434 . . . . . . . . . . . . . . . . 17  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( Pred ( R ,  A ,  y )  \  B )
1817eqeq1i 2411 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  ( Pred ( R ,  A ,  y )  \  B )  =  (/) )
19 ssdif0 3646 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  A ,  y )  C_  B 
<->  ( Pred ( R ,  A ,  y )  \  B )  =  (/) )
2018, 19bitr4i 244 . . . . . . . . . . . . . . 15  |-  ( Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<-> 
Pred ( R ,  A ,  y )  C_  B )
2120anbi1i 677 . . . . . . . . . . . . . 14  |-  ( (
Pred ( R , 
( A  \  B
) ,  y )  =  (/)  /\  -.  y  e.  B )  <->  ( Pred ( R ,  A , 
y )  C_  B  /\  -.  y  e.  B
) )
228, 21bitri 241 . . . . . . . . . . . . 13  |-  ( ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) )  <->  ( Pred ( R ,  A , 
y )  C_  B  /\  -.  y  e.  B
) )
2322anbi2i 676 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) )  <->  ( y  e.  A  /\  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) ) )
246, 7, 233bitri 263 . . . . . . . . . . 11  |-  ( ( y  e.  ( A 
\  B )  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( y  e.  A  /\  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) ) )
2524rexbii2 2695 . . . . . . . . . 10  |-  ( E. y  e.  ( A 
\  B ) Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  E. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) )
26 rexanali 2712 . . . . . . . . . 10  |-  ( E. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B )  <->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
2725, 26bitri 241 . . . . . . . . 9  |-  ( E. y  e.  ( A 
\  B ) Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
284, 27sylib 189 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) ) )  ->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
2928ex 424 . . . . . . 7  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) )  ->  -.  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
303, 29mpani 658 . . . . . 6  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( A  \  B
)  =/=  (/)  ->  -.  A. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
312, 30syl5bi 209 . . . . 5  |-  ( ( R  We  A  /\  R Se  A )  ->  ( -.  A  C_  B  ->  -.  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
3231con4d 99 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  ( A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B )  ->  A  C_  B ) )
3332imp 419 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) )  ->  A  C_  B )
3433adantrl 697 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  C_  B
)
35 simprl 733 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  B  C_  A
)
3634, 35eqssd 3325 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   Se wse 4499    We wwe 4500   `'ccnv 4836   "cima 4840   Predcpred 25381
This theorem is referenced by:  wfii  25422  wfisg  25423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-xp 4843  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 25382
  Copyright terms: Public domain W3C validator