Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wepwsolem Structured version   Visualization version   Unicode version

Theorem wepwsolem 35944
Description: Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
wepwso.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
z  e.  y  /\  -.  z  e.  x
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  x  <->  w  e.  y ) ) ) }
wepwso.u  |-  U  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z )  _E  ( y `  z
)  /\  A. w  e.  A  ( w R z  ->  (
x `  w )  =  ( y `  w ) ) ) }
wepwso.f  |-  F  =  ( a  e.  ( 2o  ^m  A ) 
|->  ( `' a " { 1o } ) )
Assertion
Ref Expression
wepwsolem  |-  ( A  e.  _V  ->  F  Isom  U ,  T  ( ( 2o  ^m  A
) ,  ~P A
) )
Distinct variable groups:    x, R, y, z, w, a    x, A, y, z, w, a   
x, F, y, z, w    T, a    U, a
Allowed substitution hints:    T( x, y, z, w)    U( x, y, z, w)    F( a)

Proof of Theorem wepwsolem
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wepwso.f . . 3  |-  F  =  ( a  e.  ( 2o  ^m  A ) 
|->  ( `' a " { 1o } ) )
21pw2f1o2 35937 . 2  |-  ( A  e.  _V  ->  F : ( 2o  ^m  A ) -1-1-onto-> ~P A )
3 fvex 5897 . . . . . . . 8  |-  ( c `
 z )  e. 
_V
43epelc 4765 . . . . . . 7  |-  ( ( b `  z )  _E  ( c `  z )  <->  ( b `  z )  e.  ( c `  z ) )
5 elmapi 7518 . . . . . . . . . . 11  |-  ( b  e.  ( 2o  ^m  A )  ->  b : A --> 2o )
65ad2antrl 739 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  ->  b : A --> 2o )
76ffvelrnda 6044 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
b `  z )  e.  2o )
8 elmapi 7518 . . . . . . . . . . 11  |-  ( c  e.  ( 2o  ^m  A )  ->  c : A --> 2o )
98ad2antll 740 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  ->  c : A --> 2o )
109ffvelrnda 6044 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
c `  z )  e.  2o )
11 n0i 3747 . . . . . . . . . . . . 13  |-  ( ( b `  z )  e.  ( c `  z )  ->  -.  ( c `  z
)  =  (/) )
1211adantl 472 . . . . . . . . . . . 12  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( b `  z )  e.  ( c `  z ) )  ->  -.  (
c `  z )  =  (/) )
13 elpri 3996 . . . . . . . . . . . . . 14  |-  ( ( c `  z )  e.  { (/) ,  1o }  ->  ( ( c `
 z )  =  (/)  \/  ( c `  z )  =  1o ) )
14 df2o3 7220 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
1513, 14eleq2s 2557 . . . . . . . . . . . . 13  |-  ( ( c `  z )  e.  2o  ->  (
( c `  z
)  =  (/)  \/  (
c `  z )  =  1o ) )
1615ad2antlr 738 . . . . . . . . . . . 12  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( b `  z )  e.  ( c `  z ) )  ->  ( (
c `  z )  =  (/)  \/  ( c `
 z )  =  1o ) )
17 orel1 388 . . . . . . . . . . . 12  |-  ( -.  ( c `  z
)  =  (/)  ->  (
( ( c `  z )  =  (/)  \/  ( c `  z
)  =  1o )  ->  ( c `  z )  =  1o ) )
1812, 16, 17sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( b `  z )  e.  ( c `  z ) )  ->  ( c `  z )  =  1o )
19 1on 7214 . . . . . . . . . . . . . 14  |-  1o  e.  On
2019onirri 5547 . . . . . . . . . . . . 13  |-  -.  1o  e.  1o
21 eleq12 2529 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b `  z
)  =  1o  /\  ( c `  z
)  =  1o )  ->  ( ( b `
 z )  e.  ( c `  z
)  <->  1o  e.  1o ) )
2221biimpd 212 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b `  z
)  =  1o  /\  ( c `  z
)  =  1o )  ->  ( ( b `
 z )  e.  ( c `  z
)  ->  1o  e.  1o ) )
2322expcom 441 . . . . . . . . . . . . . . . 16  |-  ( ( c `  z )  =  1o  ->  (
( b `  z
)  =  1o  ->  ( ( b `  z
)  e.  ( c `
 z )  ->  1o  e.  1o ) ) )
2423com3r 82 . . . . . . . . . . . . . . 15  |-  ( ( b `  z )  e.  ( c `  z )  ->  (
( c `  z
)  =  1o  ->  ( ( b `  z
)  =  1o  ->  1o  e.  1o ) ) )
2524imp 435 . . . . . . . . . . . . . 14  |-  ( ( ( b `  z
)  e.  ( c `
 z )  /\  ( c `  z
)  =  1o )  ->  ( ( b `
 z )  =  1o  ->  1o  e.  1o ) )
2625adantll 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( b `
 z )  e.  2o  /\  ( c `
 z )  e.  2o )  /\  (
b `  z )  e.  ( c `  z
) )  /\  (
c `  z )  =  1o )  ->  (
( b `  z
)  =  1o  ->  1o  e.  1o ) )
2720, 26mtoi 183 . . . . . . . . . . . 12  |-  ( ( ( ( ( b `
 z )  e.  2o  /\  ( c `
 z )  e.  2o )  /\  (
b `  z )  e.  ( c `  z
) )  /\  (
c `  z )  =  1o )  ->  -.  ( b `  z
)  =  1o )
2818, 27mpdan 679 . . . . . . . . . . 11  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( b `  z )  e.  ( c `  z ) )  ->  -.  (
b `  z )  =  1o )
2918, 28jca 539 . . . . . . . . . 10  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( b `  z )  e.  ( c `  z ) )  ->  ( (
c `  z )  =  1o  /\  -.  (
b `  z )  =  1o ) )
30 elpri 3996 . . . . . . . . . . . . . . . 16  |-  ( ( b `  z )  e.  { (/) ,  1o }  ->  ( ( b `
 z )  =  (/)  \/  ( b `  z )  =  1o ) )
3130, 14eleq2s 2557 . . . . . . . . . . . . . . 15  |-  ( ( b `  z )  e.  2o  ->  (
( b `  z
)  =  (/)  \/  (
b `  z )  =  1o ) )
3231adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( b `  z
)  e.  2o  /\  ( c `  z
)  e.  2o )  ->  ( ( b `
 z )  =  (/)  \/  ( b `  z )  =  1o ) )
33 orel2 389 . . . . . . . . . . . . . 14  |-  ( -.  ( b `  z
)  =  1o  ->  ( ( ( b `  z )  =  (/)  \/  ( b `  z
)  =  1o )  ->  ( b `  z )  =  (/) ) )
3432, 33mpan9 476 . . . . . . . . . . . . 13  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  -.  ( b `
 z )  =  1o )  ->  (
b `  z )  =  (/) )
3534adantrl 727 . . . . . . . . . . . 12  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( ( c `
 z )  =  1o  /\  -.  (
b `  z )  =  1o ) )  -> 
( b `  z
)  =  (/) )
36 0lt1o 7231 . . . . . . . . . . . 12  |-  (/)  e.  1o
3735, 36syl6eqel 2547 . . . . . . . . . . 11  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( ( c `
 z )  =  1o  /\  -.  (
b `  z )  =  1o ) )  -> 
( b `  z
)  e.  1o )
38 simprl 769 . . . . . . . . . . 11  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( ( c `
 z )  =  1o  /\  -.  (
b `  z )  =  1o ) )  -> 
( c `  z
)  =  1o )
3937, 38eleqtrrd 2542 . . . . . . . . . 10  |-  ( ( ( ( b `  z )  e.  2o  /\  ( c `  z
)  e.  2o )  /\  ( ( c `
 z )  =  1o  /\  -.  (
b `  z )  =  1o ) )  -> 
( b `  z
)  e.  ( c `
 z ) )
4029, 39impbida 848 . . . . . . . . 9  |-  ( ( ( b `  z
)  e.  2o  /\  ( c `  z
)  e.  2o )  ->  ( ( b `
 z )  e.  ( c `  z
)  <->  ( ( c `
 z )  =  1o  /\  -.  (
b `  z )  =  1o ) ) )
417, 10, 40syl2anc 671 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
( b `  z
)  e.  ( c `
 z )  <->  ( (
c `  z )  =  1o  /\  -.  (
b `  z )  =  1o ) ) )
42 simplrr 776 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  c  e.  ( 2o  ^m  A
) )
431pw2f1o2val2 35939 . . . . . . . . . 10  |-  ( ( c  e.  ( 2o 
^m  A )  /\  z  e.  A )  ->  ( z  e.  ( F `  c )  <-> 
( c `  z
)  =  1o ) )
4442, 43sylancom 678 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
z  e.  ( F `
 c )  <->  ( c `  z )  =  1o ) )
45 simplrl 775 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  b  e.  ( 2o  ^m  A
) )
461pw2f1o2val2 35939 . . . . . . . . . . 11  |-  ( ( b  e.  ( 2o 
^m  A )  /\  z  e.  A )  ->  ( z  e.  ( F `  b )  <-> 
( b `  z
)  =  1o ) )
4745, 46sylancom 678 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
z  e.  ( F `
 b )  <->  ( b `  z )  =  1o ) )
4847notbid 300 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  ( -.  z  e.  ( F `  b )  <->  -.  ( b `  z
)  =  1o ) )
4944, 48anbi12d 722 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
( z  e.  ( F `  c )  /\  -.  z  e.  ( F `  b
) )  <->  ( (
c `  z )  =  1o  /\  -.  (
b `  z )  =  1o ) ) )
5041, 49bitr4d 264 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
( b `  z
)  e.  ( c `
 z )  <->  ( z  e.  ( F `  c
)  /\  -.  z  e.  ( F `  b
) ) ) )
514, 50syl5bb 265 . . . . . 6  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
( b `  z
)  _E  ( c `
 z )  <->  ( z  e.  ( F `  c
)  /\  -.  z  e.  ( F `  b
) ) ) )
526ffvelrnda 6044 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
b `  w )  e.  2o )
539ffvelrnda 6044 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
c `  w )  e.  2o )
54 eqeq1 2465 . . . . . . . . . . . 12  |-  ( ( b `  w )  =  ( c `  w )  ->  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )
55 simplr 767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
b `  w )  =  (/) )
56 1n0 7222 . . . . . . . . . . . . . . . . . . . 20  |-  1o  =/=  (/)
5756nesymi 2692 . . . . . . . . . . . . . . . . . . 19  |-  -.  (/)  =  1o
58 eqeq1 2465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( b `  w )  =  (/)  ->  ( ( b `  w )  =  1o  <->  (/)  =  1o ) )
5957, 58mtbiri 309 . . . . . . . . . . . . . . . . . 18  |-  ( ( b `  w )  =  (/)  ->  -.  (
b `  w )  =  1o )
6059ad2antlr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  -.  ( b `  w
)  =  1o )
61 simpr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )
6260, 61mtbid 306 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  -.  ( c `  w
)  =  1o )
63 elpri 3996 . . . . . . . . . . . . . . . . . 18  |-  ( ( c `  w )  e.  { (/) ,  1o }  ->  ( ( c `
 w )  =  (/)  \/  ( c `  w )  =  1o ) )
6463, 14eleq2s 2557 . . . . . . . . . . . . . . . . 17  |-  ( ( c `  w )  e.  2o  ->  (
( c `  w
)  =  (/)  \/  (
c `  w )  =  1o ) )
6564ad3antlr 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
( c `  w
)  =  (/)  \/  (
c `  w )  =  1o ) )
66 orel2 389 . . . . . . . . . . . . . . . 16  |-  ( -.  ( c `  w
)  =  1o  ->  ( ( ( c `  w )  =  (/)  \/  ( c `  w
)  =  1o )  ->  ( c `  w )  =  (/) ) )
6762, 65, 66sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
c `  w )  =  (/) )
6855, 67eqtr4d 2498 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  (/) )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
b `  w )  =  ( c `  w ) )
6968ex 440 . . . . . . . . . . . . 13  |-  ( ( ( ( b `  w )  e.  2o  /\  ( c `  w
)  e.  2o )  /\  ( b `  w )  =  (/) )  ->  ( ( ( b `  w )  =  1o  <->  ( c `  w )  =  1o )  ->  ( b `  w )  =  ( c `  w ) ) )
70 simplr 767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  1o )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
b `  w )  =  1o )
71 simpr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  1o )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )
7270, 71mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  1o )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
c `  w )  =  1o )
7370, 72eqtr4d 2498 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( b `
 w )  e.  2o  /\  ( c `
 w )  e.  2o )  /\  (
b `  w )  =  1o )  /\  (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o ) )  ->  (
b `  w )  =  ( c `  w ) )
7473ex 440 . . . . . . . . . . . . 13  |-  ( ( ( ( b `  w )  e.  2o  /\  ( c `  w
)  e.  2o )  /\  ( b `  w )  =  1o )  ->  ( (
( b `  w
)  =  1o  <->  ( c `  w )  =  1o )  ->  ( b `  w )  =  ( c `  w ) ) )
75 elpri 3996 . . . . . . . . . . . . . . 15  |-  ( ( b `  w )  e.  { (/) ,  1o }  ->  ( ( b `
 w )  =  (/)  \/  ( b `  w )  =  1o ) )
7675, 14eleq2s 2557 . . . . . . . . . . . . . 14  |-  ( ( b `  w )  e.  2o  ->  (
( b `  w
)  =  (/)  \/  (
b `  w )  =  1o ) )
7776adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( b `  w
)  e.  2o  /\  ( c `  w
)  e.  2o )  ->  ( ( b `
 w )  =  (/)  \/  ( b `  w )  =  1o ) )
7869, 74, 77mpjaodan 800 . . . . . . . . . . . 12  |-  ( ( ( b `  w
)  e.  2o  /\  ( c `  w
)  e.  2o )  ->  ( ( ( b `  w )  =  1o  <->  ( c `  w )  =  1o )  ->  ( b `  w )  =  ( c `  w ) ) )
7954, 78impbid2 209 . . . . . . . . . . 11  |-  ( ( ( b `  w
)  e.  2o  /\  ( c `  w
)  e.  2o )  ->  ( ( b `
 w )  =  ( c `  w
)  <->  ( ( b `
 w )  =  1o  <->  ( c `  w )  =  1o ) ) )
8052, 53, 79syl2anc 671 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
( b `  w
)  =  ( c `
 w )  <->  ( (
b `  w )  =  1o  <->  ( c `  w )  =  1o ) ) )
81 simplrl 775 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  b  e.  ( 2o  ^m  A
) )
821pw2f1o2val2 35939 . . . . . . . . . . . 12  |-  ( ( b  e.  ( 2o 
^m  A )  /\  w  e.  A )  ->  ( w  e.  ( F `  b )  <-> 
( b `  w
)  =  1o ) )
8381, 82sylancom 678 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
w  e.  ( F `
 b )  <->  ( b `  w )  =  1o ) )
84 simplrr 776 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  c  e.  ( 2o  ^m  A
) )
851pw2f1o2val2 35939 . . . . . . . . . . . 12  |-  ( ( c  e.  ( 2o 
^m  A )  /\  w  e.  A )  ->  ( w  e.  ( F `  c )  <-> 
( c `  w
)  =  1o ) )
8684, 85sylancom 678 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
w  e.  ( F `
 c )  <->  ( c `  w )  =  1o ) )
8783, 86bibi12d 327 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
( w  e.  ( F `  b )  <-> 
w  e.  ( F `
 c ) )  <-> 
( ( b `  w )  =  1o  <->  ( c `  w )  =  1o ) ) )
8880, 87bitr4d 264 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
( b `  w
)  =  ( c `
 w )  <->  ( w  e.  ( F `  b
)  <->  w  e.  ( F `  c )
) ) )
8988imbi2d 322 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  w  e.  A )  ->  (
( w R z  ->  ( b `  w )  =  ( c `  w ) )  <->  ( w R z  ->  ( w  e.  ( F `  b
)  <->  w  e.  ( F `  c )
) ) ) )
9089ralbidva 2835 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  ->  ( A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) )  <->  A. w  e.  A  ( w R z  ->  ( w  e.  ( F `  b
)  <->  w  e.  ( F `  c )
) ) ) )
9190adantr 471 . . . . . 6  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  ( A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) )  <->  A. w  e.  A  ( w R z  ->  ( w  e.  ( F `  b
)  <->  w  e.  ( F `  c )
) ) ) )
9251, 91anbi12d 722 . . . . 5  |-  ( ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  /\  z  e.  A )  ->  (
( ( b `  z )  _E  (
c `  z )  /\  A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) ) )  <->  ( (
z  e.  ( F `
 c )  /\  -.  z  e.  ( F `  b )
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) ) )
9392rexbidva 2909 . . . 4  |-  ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  ->  ( E. z  e.  A  ( ( b `  z )  _E  (
c `  z )  /\  A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) ) )  <->  E. z  e.  A  ( (
z  e.  ( F `
 c )  /\  -.  z  e.  ( F `  b )
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) ) )
94 vex 3059 . . . . 5  |-  b  e. 
_V
95 vex 3059 . . . . 5  |-  c  e. 
_V
96 fveq1 5886 . . . . . . . 8  |-  ( x  =  b  ->  (
x `  z )  =  ( b `  z ) )
97 fveq1 5886 . . . . . . . 8  |-  ( y  =  c  ->  (
y `  z )  =  ( c `  z ) )
9896, 97breqan12d 4431 . . . . . . 7  |-  ( ( x  =  b  /\  y  =  c )  ->  ( ( x `  z )  _E  (
y `  z )  <->  ( b `  z )  _E  ( c `  z ) ) )
99 fveq1 5886 . . . . . . . . . 10  |-  ( x  =  b  ->  (
x `  w )  =  ( b `  w ) )
100 fveq1 5886 . . . . . . . . . 10  |-  ( y  =  c  ->  (
y `  w )  =  ( c `  w ) )
10199, 100eqeqan12d 2477 . . . . . . . . 9  |-  ( ( x  =  b  /\  y  =  c )  ->  ( ( x `  w )  =  ( y `  w )  <-> 
( b `  w
)  =  ( c `
 w ) ) )
102101imbi2d 322 . . . . . . . 8  |-  ( ( x  =  b  /\  y  =  c )  ->  ( ( w R z  ->  ( x `  w )  =  ( y `  w ) )  <->  ( w R z  ->  ( b `  w )  =  ( c `  w ) ) ) )
103102ralbidv 2838 . . . . . . 7  |-  ( ( x  =  b  /\  y  =  c )  ->  ( A. w  e.  A  ( w R z  ->  ( x `  w )  =  ( y `  w ) )  <->  A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) ) ) )
10498, 103anbi12d 722 . . . . . 6  |-  ( ( x  =  b  /\  y  =  c )  ->  ( ( ( x `
 z )  _E  ( y `  z
)  /\  A. w  e.  A  ( w R z  ->  (
x `  w )  =  ( y `  w ) ) )  <-> 
( ( b `  z )  _E  (
c `  z )  /\  A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) ) ) ) )
105104rexbidv 2912 . . . . 5  |-  ( ( x  =  b  /\  y  =  c )  ->  ( E. z  e.  A  ( ( x `
 z )  _E  ( y `  z
)  /\  A. w  e.  A  ( w R z  ->  (
x `  w )  =  ( y `  w ) ) )  <->  E. z  e.  A  ( ( b `  z )  _E  (
c `  z )  /\  A. w  e.  A  ( w R z  ->  ( b `  w )  =  ( c `  w ) ) ) ) )
106 wepwso.u . . . . 5  |-  U  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z )  _E  ( y `  z
)  /\  A. w  e.  A  ( w R z  ->  (
x `  w )  =  ( y `  w ) ) ) }
10794, 95, 105, 106braba 4731 . . . 4  |-  ( b U c  <->  E. z  e.  A  ( (
b `  z )  _E  ( c `  z
)  /\  A. w  e.  A  ( w R z  ->  (
b `  w )  =  ( c `  w ) ) ) )
108 fvex 5897 . . . . 5  |-  ( F `
 b )  e. 
_V
109 fvex 5897 . . . . 5  |-  ( F `
 c )  e. 
_V
110 eleq2 2528 . . . . . . . 8  |-  ( y  =  ( F `  c )  ->  (
z  e.  y  <->  z  e.  ( F `  c ) ) )
111 eleq2 2528 . . . . . . . . 9  |-  ( x  =  ( F `  b )  ->  (
z  e.  x  <->  z  e.  ( F `  b ) ) )
112111notbid 300 . . . . . . . 8  |-  ( x  =  ( F `  b )  ->  ( -.  z  e.  x  <->  -.  z  e.  ( F `
 b ) ) )
113110, 112bi2anan9r 890 . . . . . . 7  |-  ( ( x  =  ( F `
 b )  /\  y  =  ( F `  c ) )  -> 
( ( z  e.  y  /\  -.  z  e.  x )  <->  ( z  e.  ( F `  c
)  /\  -.  z  e.  ( F `  b
) ) ) )
114 eleq2 2528 . . . . . . . . . 10  |-  ( x  =  ( F `  b )  ->  (
w  e.  x  <->  w  e.  ( F `  b ) ) )
115 eleq2 2528 . . . . . . . . . 10  |-  ( y  =  ( F `  c )  ->  (
w  e.  y  <->  w  e.  ( F `  c ) ) )
116114, 115bi2bian9 891 . . . . . . . . 9  |-  ( ( x  =  ( F `
 b )  /\  y  =  ( F `  c ) )  -> 
( ( w  e.  x  <->  w  e.  y
)  <->  ( w  e.  ( F `  b
)  <->  w  e.  ( F `  c )
) ) )
117116imbi2d 322 . . . . . . . 8  |-  ( ( x  =  ( F `
 b )  /\  y  =  ( F `  c ) )  -> 
( ( w R z  ->  ( w  e.  x  <->  w  e.  y
) )  <->  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) )
118117ralbidv 2838 . . . . . . 7  |-  ( ( x  =  ( F `
 b )  /\  y  =  ( F `  c ) )  -> 
( A. w  e.  A  ( w R z  ->  ( w  e.  x  <->  w  e.  y
) )  <->  A. w  e.  A  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) )
119113, 118anbi12d 722 . . . . . 6  |-  ( ( x  =  ( F `
 b )  /\  y  =  ( F `  c ) )  -> 
( ( ( z  e.  y  /\  -.  z  e.  x )  /\  A. w  e.  A  ( w R z  ->  ( w  e.  x  <->  w  e.  y
) ) )  <->  ( (
z  e.  ( F `
 c )  /\  -.  z  e.  ( F `  b )
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) ) )
120119rexbidv 2912 . . . . 5  |-  ( ( x  =  ( F `
 b )  /\  y  =  ( F `  c ) )  -> 
( E. z  e.  A  ( ( z  e.  y  /\  -.  z  e.  x )  /\  A. w  e.  A  ( w R z  ->  ( w  e.  x  <->  w  e.  y
) ) )  <->  E. z  e.  A  ( (
z  e.  ( F `
 c )  /\  -.  z  e.  ( F `  b )
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) ) )
121 wepwso.t . . . . 5  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
z  e.  y  /\  -.  z  e.  x
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  x  <->  w  e.  y ) ) ) }
122108, 109, 120, 121braba 4731 . . . 4  |-  ( ( F `  b ) T ( F `  c )  <->  E. z  e.  A  ( (
z  e.  ( F `
 c )  /\  -.  z  e.  ( F `  b )
)  /\  A. w  e.  A  ( w R z  ->  (
w  e.  ( F `
 b )  <->  w  e.  ( F `  c ) ) ) ) )
12393, 107, 1223bitr4g 296 . . 3  |-  ( ( A  e.  _V  /\  ( b  e.  ( 2o  ^m  A )  /\  c  e.  ( 2o  ^m  A ) ) )  ->  (
b U c  <->  ( F `  b ) T ( F `  c ) ) )
124123ralrimivva 2820 . 2  |-  ( A  e.  _V  ->  A. b  e.  ( 2o  ^m  A
) A. c  e.  ( 2o  ^m  A
) ( b U c  <->  ( F `  b ) T ( F `  c ) ) )
125 df-isom 5609 . 2  |-  ( F 
Isom  U ,  T  ( ( 2o  ^m  A
) ,  ~P A
)  <->  ( F :
( 2o  ^m  A
)
-1-1-onto-> ~P A  /\  A. b  e.  ( 2o  ^m  A
) A. c  e.  ( 2o  ^m  A
) ( b U c  <->  ( F `  b ) T ( F `  c ) ) ) )
1262, 124, 125sylanbrc 675 1  |-  ( A  e.  _V  ->  F  Isom  U ,  T  ( ( 2o  ^m  A
) ,  ~P A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    = wceq 1454    e. wcel 1897   A.wral 2748   E.wrex 2749   _Vcvv 3056   (/)c0 3742   ~Pcpw 3962   {csn 3979   {cpr 3981   class class class wbr 4415   {copab 4473    |-> cmpt 4474    _E cep 4761   `'ccnv 4851   "cima 4855   -->wf 5596   -1-1-onto->wf1o 5599   ` cfv 5600    Isom wiso 5601  (class class class)co 6314   1oc1o 7200   2oc2o 7201    ^m cmap 7497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-ord 5444  df-on 5445  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-1st 6819  df-2nd 6820  df-1o 7207  df-2o 7208  df-map 7499
This theorem is referenced by:  wepwso  35945
  Copyright terms: Public domain W3C validator