MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapsolem Structured version   Unicode version

Theorem wemapsolem 7763
Description: Lemma for wemapso 7764. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
wemapso.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
wemapsolem.1  |-  U  C_  ( B  ^m  A )
wemapsolem.2  |-  ( ph  ->  A  e.  _V )
wemapsolem.3  |-  ( ph  ->  R  Or  A )
wemapsolem.4  |-  ( ph  ->  S  Or  B )
wemapsolem.5  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  E. c  e.  dom  ( a  \ 
b ) A. d  e.  dom  ( a  \ 
b )  -.  d R c )
Assertion
Ref Expression
wemapsolem  |-  ( ph  ->  T  Or  U )
Distinct variable groups:    a, b,
c, d, x, B    T, a, b, c, d    U, a, b, c, d   
w, a, y, z, b, c, x, A, d    R, a, b, c, d, w, x, y, z    S, a, b, c, d, w, x, y, z    ph, a, b, c, d
Allowed substitution hints:    ph( x, y, z, w)    B( y,
z, w)    T( x, y, z, w)    U( x, y, z, w)

Proof of Theorem wemapsolem
StepHypRef Expression
1 wemapsolem.1 . . 3  |-  U  C_  ( B  ^m  A )
2 wemapsolem.2 . . . 4  |-  ( ph  ->  A  e.  _V )
3 wemapsolem.3 . . . 4  |-  ( ph  ->  R  Or  A )
4 wemapsolem.4 . . . . 5  |-  ( ph  ->  S  Or  B )
5 sopo 4657 . . . . 5  |-  ( S  Or  B  ->  S  Po  B )
64, 5syl 16 . . . 4  |-  ( ph  ->  S  Po  B )
7 wemapso.t . . . . 5  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
87wemappo 7762 . . . 4  |-  ( ( A  e.  _V  /\  R  Or  A  /\  S  Po  B )  ->  T  Po  ( B  ^m  A ) )
92, 3, 6, 8syl3anc 1218 . . 3  |-  ( ph  ->  T  Po  ( B  ^m  A ) )
10 poss 4642 . . 3  |-  ( U 
C_  ( B  ^m  A )  ->  ( T  Po  ( B  ^m  A )  ->  T  Po  U ) )
111, 9, 10mpsyl 63 . 2  |-  ( ph  ->  T  Po  U )
12 df-ne 2607 . . . . 5  |-  ( a  =/=  b  <->  -.  a  =  b )
13 wemapsolem.5 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  E. c  e.  dom  ( a  \ 
b ) A. d  e.  dom  ( a  \ 
b )  -.  d R c )
14 simprll 761 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  a  e.  U )
151, 14sseldi 3353 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  a  e.  ( B  ^m  A
) )
16 elmapi 7233 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( B  ^m  A )  ->  a : A --> B )
1715, 16syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  a : A --> B )
18 ffn 5558 . . . . . . . . . . . . . . . 16  |-  ( a : A --> B  -> 
a  Fn  A )
1917, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  a  Fn  A )
20 simprlr 762 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  b  e.  U )
211, 20sseldi 3353 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  b  e.  ( B  ^m  A
) )
22 elmapi 7233 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( B  ^m  A )  ->  b : A --> B )
2321, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  b : A --> B )
24 ffn 5558 . . . . . . . . . . . . . . . 16  |-  ( b : A --> B  -> 
b  Fn  A )
2523, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  b  Fn  A )
26 fndmdif 5806 . . . . . . . . . . . . . . 15  |-  ( ( a  Fn  A  /\  b  Fn  A )  ->  dom  ( a  \ 
b )  =  {
x  e.  A  | 
( a `  x
)  =/=  ( b `
 x ) } )
2719, 25, 26syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  dom  ( a  \  b
)  =  { x  e.  A  |  (
a `  x )  =/=  ( b `  x
) } )
2827eleq2d 2509 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
c  e.  dom  (
a  \  b )  <->  c  e.  { x  e.  A  |  ( a `
 x )  =/=  ( b `  x
) } ) )
29 nesym 2646 . . . . . . . . . . . . . . 15  |-  ( ( a `  x )  =/=  ( b `  x )  <->  -.  (
b `  x )  =  ( a `  x ) )
30 fveq2 5690 . . . . . . . . . . . . . . . . 17  |-  ( x  =  c  ->  (
b `  x )  =  ( b `  c ) )
31 fveq2 5690 . . . . . . . . . . . . . . . . 17  |-  ( x  =  c  ->  (
a `  x )  =  ( a `  c ) )
3230, 31eqeq12d 2456 . . . . . . . . . . . . . . . 16  |-  ( x  =  c  ->  (
( b `  x
)  =  ( a `
 x )  <->  ( b `  c )  =  ( a `  c ) ) )
3332notbid 294 . . . . . . . . . . . . . . 15  |-  ( x  =  c  ->  ( -.  ( b `  x
)  =  ( a `
 x )  <->  -.  (
b `  c )  =  ( a `  c ) ) )
3429, 33syl5bb 257 . . . . . . . . . . . . . 14  |-  ( x  =  c  ->  (
( a `  x
)  =/=  ( b `
 x )  <->  -.  (
b `  c )  =  ( a `  c ) ) )
3534elrab 3116 . . . . . . . . . . . . 13  |-  ( c  e.  { x  e.  A  |  ( a `
 x )  =/=  ( b `  x
) }  <->  ( c  e.  A  /\  -.  (
b `  c )  =  ( a `  c ) ) )
3628, 35syl6bb 261 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
c  e.  dom  (
a  \  b )  <->  ( c  e.  A  /\  -.  ( b `  c
)  =  ( a `
 c ) ) ) )
3727eleq2d 2509 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
d  e.  dom  (
a  \  b )  <->  d  e.  { x  e.  A  |  ( a `
 x )  =/=  ( b `  x
) } ) )
38 fveq2 5690 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  d  ->  (
b `  x )  =  ( b `  d ) )
39 fveq2 5690 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  d  ->  (
a `  x )  =  ( a `  d ) )
4038, 39eqeq12d 2456 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  d  ->  (
( b `  x
)  =  ( a `
 x )  <->  ( b `  d )  =  ( a `  d ) ) )
4140notbid 294 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  d  ->  ( -.  ( b `  x
)  =  ( a `
 x )  <->  -.  (
b `  d )  =  ( a `  d ) ) )
4229, 41syl5bb 257 . . . . . . . . . . . . . . . . 17  |-  ( x  =  d  ->  (
( a `  x
)  =/=  ( b `
 x )  <->  -.  (
b `  d )  =  ( a `  d ) ) )
4342elrab 3116 . . . . . . . . . . . . . . . 16  |-  ( d  e.  { x  e.  A  |  ( a `
 x )  =/=  ( b `  x
) }  <->  ( d  e.  A  /\  -.  (
b `  d )  =  ( a `  d ) ) )
4437, 43syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
d  e.  dom  (
a  \  b )  <->  ( d  e.  A  /\  -.  ( b `  d
)  =  ( a `
 d ) ) ) )
4544imbi1d 317 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
( d  e.  dom  ( a  \  b
)  ->  -.  d R c )  <->  ( (
d  e.  A  /\  -.  ( b `  d
)  =  ( a `
 d ) )  ->  -.  d R
c ) ) )
46 impexp 446 . . . . . . . . . . . . . . 15  |-  ( ( ( d  e.  A  /\  -.  ( b `  d )  =  ( a `  d ) )  ->  -.  d R c )  <->  ( d  e.  A  ->  ( -.  ( b `  d
)  =  ( a `
 d )  ->  -.  d R c ) ) )
47 con34b 292 . . . . . . . . . . . . . . . 16  |-  ( ( d R c  -> 
( b `  d
)  =  ( a `
 d ) )  <-> 
( -.  ( b `
 d )  =  ( a `  d
)  ->  -.  d R c ) )
4847imbi2i 312 . . . . . . . . . . . . . . 15  |-  ( ( d  e.  A  -> 
( d R c  ->  ( b `  d )  =  ( a `  d ) ) )  <->  ( d  e.  A  ->  ( -.  ( b `  d
)  =  ( a `
 d )  ->  -.  d R c ) ) )
4946, 48bitr4i 252 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  A  /\  -.  ( b `  d )  =  ( a `  d ) )  ->  -.  d R c )  <->  ( d  e.  A  ->  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) ) )
5045, 49syl6bb 261 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
( d  e.  dom  ( a  \  b
)  ->  -.  d R c )  <->  ( d  e.  A  ->  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) ) ) )
5150ralbidv2 2736 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  ( A. d  e.  dom  ( a  \  b
)  -.  d R c  <->  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) )
5236, 51anbi12d 710 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
( c  e.  dom  ( a  \  b
)  /\  A. d  e.  dom  ( a  \ 
b )  -.  d R c )  <->  ( (
c  e.  A  /\  -.  ( b `  c
)  =  ( a `
 c ) )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) ) )
53 anass 649 . . . . . . . . . . 11  |-  ( ( ( c  e.  A  /\  -.  ( b `  c )  =  ( a `  c ) )  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) )  <-> 
( c  e.  A  /\  ( -.  ( b `
 c )  =  ( a `  c
)  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) ) ) )
5452, 53syl6bb 261 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
( c  e.  dom  ( a  \  b
)  /\  A. d  e.  dom  ( a  \ 
b )  -.  d R c )  <->  ( c  e.  A  /\  ( -.  ( b `  c
)  =  ( a `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) ) ) ) )
5554rexbidv2 2737 . . . . . . . . 9  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  ( E. c  e.  dom  ( a  \  b
) A. d  e. 
dom  ( a  \ 
b )  -.  d R c  <->  E. c  e.  A  ( -.  ( b `  c
)  =  ( a `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) ) ) )
5613, 55mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  E. c  e.  A  ( -.  ( b `  c
)  =  ( a `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) ) )
574ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( a  e.  U  /\  b  e.  U
)  /\  a  =/=  b ) )  /\  c  e.  A )  ->  S  Or  B )
5823ffvelrnda 5842 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( a  e.  U  /\  b  e.  U
)  /\  a  =/=  b ) )  /\  c  e.  A )  ->  ( b `  c
)  e.  B )
5917ffvelrnda 5842 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( a  e.  U  /\  b  e.  U
)  /\  a  =/=  b ) )  /\  c  e.  A )  ->  ( a `  c
)  e.  B )
60 sotrieq 4667 . . . . . . . . . . . . 13  |-  ( ( S  Or  B  /\  ( ( b `  c )  e.  B  /\  ( a `  c
)  e.  B ) )  ->  ( (
b `  c )  =  ( a `  c )  <->  -.  (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) ) ) )
6160con2bid 329 . . . . . . . . . . . 12  |-  ( ( S  Or  B  /\  ( ( b `  c )  e.  B  /\  ( a `  c
)  e.  B ) )  ->  ( (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) )  <->  -.  ( b `  c
)  =  ( a `
 c ) ) )
6261biimprd 223 . . . . . . . . . . 11  |-  ( ( S  Or  B  /\  ( ( b `  c )  e.  B  /\  ( a `  c
)  e.  B ) )  ->  ( -.  ( b `  c
)  =  ( a `
 c )  -> 
( ( b `  c ) S ( a `  c )  \/  ( a `  c ) S ( b `  c ) ) ) )
6357, 58, 59, 62syl12anc 1216 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( a  e.  U  /\  b  e.  U
)  /\  a  =/=  b ) )  /\  c  e.  A )  ->  ( -.  ( b `
 c )  =  ( a `  c
)  ->  ( (
b `  c ) S ( a `  c )  \/  (
a `  c ) S ( b `  c ) ) ) )
6463anim1d 564 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( a  e.  U  /\  b  e.  U
)  /\  a  =/=  b ) )  /\  c  e.  A )  ->  ( ( -.  (
b `  c )  =  ( a `  c )  /\  A. d  e.  A  (
d R c  -> 
( b `  d
)  =  ( a `
 d ) ) )  ->  ( (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) ) )
6564reximdva 2827 . . . . . . . 8  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  ( E. c  e.  A  ( -.  ( b `  c )  =  ( a `  c )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) )  ->  E. c  e.  A  ( (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) ) )
6656, 65mpd 15 . . . . . . 7  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  E. c  e.  A  ( (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) )
67 vex 2974 . . . . . . . . . . 11  |-  b  e. 
_V
68 vex 2974 . . . . . . . . . . 11  |-  a  e. 
_V
697wemaplem1 7759 . . . . . . . . . . 11  |-  ( ( b  e.  _V  /\  a  e.  _V )  ->  ( b T a  <->  E. c  e.  A  ( ( b `  c ) S ( a `  c )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) ) )
7067, 68, 69mp2an 672 . . . . . . . . . 10  |-  ( b T a  <->  E. c  e.  A  ( (
b `  c ) S ( a `  c )  /\  A. d  e.  A  (
d R c  -> 
( b `  d
)  =  ( a `
 d ) ) ) )
717wemaplem1 7759 . . . . . . . . . . 11  |-  ( ( a  e.  _V  /\  b  e.  _V )  ->  ( a T b  <->  E. c  e.  A  ( ( a `  c ) S ( b `  c )  /\  A. d  e.  A  ( d R c  ->  ( a `  d )  =  ( b `  d ) ) ) ) )
7268, 67, 71mp2an 672 . . . . . . . . . 10  |-  ( a T b  <->  E. c  e.  A  ( (
a `  c ) S ( b `  c )  /\  A. d  e.  A  (
d R c  -> 
( a `  d
)  =  ( b `
 d ) ) ) )
7370, 72orbi12i 521 . . . . . . . . 9  |-  ( ( b T a  \/  a T b )  <-> 
( E. c  e.  A  ( ( b `
 c ) S ( a `  c
)  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) )  \/  E. c  e.  A  ( ( a `
 c ) S ( b `  c
)  /\  A. d  e.  A  ( d R c  ->  (
a `  d )  =  ( b `  d ) ) ) ) )
74 r19.43 2875 . . . . . . . . 9  |-  ( E. c  e.  A  ( ( ( b `  c ) S ( a `  c )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) )  \/  (
( a `  c
) S ( b `
 c )  /\  A. d  e.  A  ( d R c  -> 
( a `  d
)  =  ( b `
 d ) ) ) )  <->  ( E. c  e.  A  (
( b `  c
) S ( a `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) )  \/  E. c  e.  A  ( (
a `  c ) S ( b `  c )  /\  A. d  e.  A  (
d R c  -> 
( a `  d
)  =  ( b `
 d ) ) ) ) )
7573, 74bitr4i 252 . . . . . . . 8  |-  ( ( b T a  \/  a T b )  <->  E. c  e.  A  ( ( ( b `
 c ) S ( a `  c
)  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) )  \/  ( ( a `
 c ) S ( b `  c
)  /\  A. d  e.  A  ( d R c  ->  (
a `  d )  =  ( b `  d ) ) ) ) )
76 andir 863 . . . . . . . . . 10  |-  ( ( ( ( b `  c ) S ( a `  c )  \/  ( a `  c ) S ( b `  c ) )  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) )  <-> 
( ( ( b `
 c ) S ( a `  c
)  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) )  \/  ( ( a `
 c ) S ( b `  c
)  /\  A. d  e.  A  ( d R c  ->  (
b `  d )  =  ( a `  d ) ) ) ) )
77 eqcom 2444 . . . . . . . . . . . . . 14  |-  ( ( b `  d )  =  ( a `  d )  <->  ( a `  d )  =  ( b `  d ) )
7877imbi2i 312 . . . . . . . . . . . . 13  |-  ( ( d R c  -> 
( b `  d
)  =  ( a `
 d ) )  <-> 
( d R c  ->  ( a `  d )  =  ( b `  d ) ) )
7978ralbii 2738 . . . . . . . . . . . 12  |-  ( A. d  e.  A  (
d R c  -> 
( b `  d
)  =  ( a `
 d ) )  <->  A. d  e.  A  ( d R c  ->  ( a `  d )  =  ( b `  d ) ) )
8079anbi2i 694 . . . . . . . . . . 11  |-  ( ( ( a `  c
) S ( b `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) )  <->  ( ( a `
 c ) S ( b `  c
)  /\  A. d  e.  A  ( d R c  ->  (
a `  d )  =  ( b `  d ) ) ) )
8180orbi2i 519 . . . . . . . . . 10  |-  ( ( ( ( b `  c ) S ( a `  c )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) )  \/  (
( a `  c
) S ( b `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) ) )  <->  ( (
( b `  c
) S ( a `
 c )  /\  A. d  e.  A  ( d R c  -> 
( b `  d
)  =  ( a `
 d ) ) )  \/  ( ( a `  c ) S ( b `  c )  /\  A. d  e.  A  (
d R c  -> 
( a `  d
)  =  ( b `
 d ) ) ) ) )
8276, 81bitr2i 250 . . . . . . . . 9  |-  ( ( ( ( b `  c ) S ( a `  c )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) )  \/  (
( a `  c
) S ( b `
 c )  /\  A. d  e.  A  ( d R c  -> 
( a `  d
)  =  ( b `
 d ) ) ) )  <->  ( (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) )
8382rexbii 2739 . . . . . . . 8  |-  ( E. c  e.  A  ( ( ( b `  c ) S ( a `  c )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) )  \/  (
( a `  c
) S ( b `
 c )  /\  A. d  e.  A  ( d R c  -> 
( a `  d
)  =  ( b `
 d ) ) ) )  <->  E. c  e.  A  ( (
( b `  c
) S ( a `
 c )  \/  ( a `  c
) S ( b `
 c ) )  /\  A. d  e.  A  ( d R c  ->  ( b `  d )  =  ( a `  d ) ) ) )
8475, 83bitri 249 . . . . . . 7  |-  ( ( b T a  \/  a T b )  <->  E. c  e.  A  ( ( ( b `
 c ) S ( a `  c
)  \/  ( a `
 c ) S ( b `  c
) )  /\  A. d  e.  A  (
d R c  -> 
( b `  d
)  =  ( a `
 d ) ) ) )
8566, 84sylibr 212 . . . . . 6  |-  ( (
ph  /\  ( (
a  e.  U  /\  b  e.  U )  /\  a  =/=  b
) )  ->  (
b T a  \/  a T b ) )
8685expr 615 . . . . 5  |-  ( (
ph  /\  ( a  e.  U  /\  b  e.  U ) )  -> 
( a  =/=  b  ->  ( b T a  \/  a T b ) ) )
8712, 86syl5bir 218 . . . 4  |-  ( (
ph  /\  ( a  e.  U  /\  b  e.  U ) )  -> 
( -.  a  =  b  ->  ( b T a  \/  a T b ) ) )
8887orrd 378 . . 3  |-  ( (
ph  /\  ( a  e.  U  /\  b  e.  U ) )  -> 
( a  =  b  \/  ( b T a  \/  a T b ) ) )
89 3orrot 971 . . . 4  |-  ( ( a T b  \/  a  =  b  \/  b T a )  <-> 
( a  =  b  \/  b T a  \/  a T b ) )
90 3orass 968 . . . 4  |-  ( ( a  =  b  \/  b T a  \/  a T b )  <-> 
( a  =  b  \/  ( b T a  \/  a T b ) ) )
9189, 90bitr2i 250 . . 3  |-  ( ( a  =  b  \/  ( b T a  \/  a T b ) )  <->  ( a T b  \/  a  =  b  \/  b T a ) )
9288, 91sylib 196 . 2  |-  ( (
ph  /\  ( a  e.  U  /\  b  e.  U ) )  -> 
( a T b  \/  a  =  b  \/  b T a ) )
9311, 92issod 4670 1  |-  ( ph  ->  T  Or  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    = wceq 1369    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715   {crab 2718   _Vcvv 2971    \ cdif 3324    C_ wss 3327   class class class wbr 4291   {copab 4348    Po wpo 4638    Or wor 4639   dom cdm 4839    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6090    ^m cmap 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-po 4640  df-so 4641  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7215
This theorem is referenced by:  wemapso  7764  wemapso2OLD  7765  wemapso2lem  7766
  Copyright terms: Public domain W3C validator