MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wefrc Structured version   Visualization version   Unicode version

Theorem wefrc 4833
Description: A nonempty (possibly proper) subclass of a class well-ordered by  _E has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
wefrc  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem wefrc
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wess 4826 . . 3  |-  ( B 
C_  A  ->  (  _E  We  A  ->  _E  We  B ) )
2 n0 3732 . . . 4  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
3 ineq2 3619 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( B  i^i  x )  =  ( B  i^i  y
) )
43eqeq1d 2473 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( B  i^i  x
)  =  (/)  <->  ( B  i^i  y )  =  (/) ) )
54rspcev 3136 . . . . . . . . 9  |-  ( ( y  e.  B  /\  ( B  i^i  y
)  =  (/) )  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) )
65ex 441 . . . . . . . 8  |-  ( y  e.  B  ->  (
( B  i^i  y
)  =  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
76adantl 473 . . . . . . 7  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =  (/)  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
8 inss1 3643 . . . . . . . . . . 11  |-  ( B  i^i  y )  C_  B
9 wefr 4829 . . . . . . . . . . . . 13  |-  (  _E  We  B  ->  _E  Fr  B )
10 vex 3034 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1110inex2 4538 . . . . . . . . . . . . . 14  |-  ( B  i^i  y )  e. 
_V
1211epfrc 4825 . . . . . . . . . . . . 13  |-  ( (  _E  Fr  B  /\  ( B  i^i  y
)  C_  B  /\  ( B  i^i  y
)  =/=  (/) )  ->  E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/) )
139, 12syl3an1 1325 . . . . . . . . . . . 12  |-  ( (  _E  We  B  /\  ( B  i^i  y
)  C_  B  /\  ( B  i^i  y
)  =/=  (/) )  ->  E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/) )
14133exp 1230 . . . . . . . . . . 11  |-  (  _E  We  B  ->  (
( B  i^i  y
)  C_  B  ->  ( ( B  i^i  y
)  =/=  (/)  ->  E. x  e.  ( B  i^i  y
) ( ( B  i^i  y )  i^i  x )  =  (/) ) ) )
158, 14mpi 20 . . . . . . . . . 10  |-  (  _E  We  B  ->  (
( B  i^i  y
)  =/=  (/)  ->  E. x  e.  ( B  i^i  y
) ( ( B  i^i  y )  i^i  x )  =  (/) ) )
16 elin 3608 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  i^i  y )  <->  ( x  e.  B  /\  x  e.  y ) )
1716anbi1i 709 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B  i^i  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) )  <->  ( (
x  e.  B  /\  x  e.  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) )
18 anass 661 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  x  e.  y
)  /\  ( ( B  i^i  y )  i^i  x )  =  (/) ) 
<->  ( x  e.  B  /\  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) ) ) )
1917, 18bitri 257 . . . . . . . . . . 11  |-  ( ( x  e.  ( B  i^i  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) )  <->  ( x  e.  B  /\  (
x  e.  y  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) ) )
2019rexbii2 2879 . . . . . . . . . 10  |-  ( E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/)  <->  E. x  e.  B  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) )
2115, 20syl6ib 234 . . . . . . . . 9  |-  (  _E  We  B  ->  (
( B  i^i  y
)  =/=  (/)  ->  E. x  e.  B  ( x  e.  y  /\  (
( B  i^i  y
)  i^i  x )  =  (/) ) ) )
2221adantr 472 . . . . . . . 8  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =/=  (/)  ->  E. x  e.  B  ( x  e.  y  /\  (
( B  i^i  y
)  i^i  x )  =  (/) ) ) )
23 elin 3608 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( B  i^i  x )  <->  ( z  e.  B  /\  z  e.  x ) )
24 df-3an 1009 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  z  e.  B  /\  x  e.  B )  <->  ( ( y  e.  B  /\  z  e.  B
)  /\  x  e.  B ) )
25 3anrot 1012 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  z  e.  B  /\  x  e.  B )  <->  ( z  e.  B  /\  x  e.  B  /\  y  e.  B )
)
2624, 25bitr3i 259 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  B  /\  z  e.  B
)  /\  x  e.  B )  <->  ( z  e.  B  /\  x  e.  B  /\  y  e.  B ) )
27 wetrep 4832 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _E  We  B  /\  ( z  e.  B  /\  x  e.  B  /\  y  e.  B
) )  ->  (
( z  e.  x  /\  x  e.  y
)  ->  z  e.  y ) )
2827expd 443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (  _E  We  B  /\  ( z  e.  B  /\  x  e.  B  /\  y  e.  B
) )  ->  (
z  e.  x  -> 
( x  e.  y  ->  z  e.  y ) ) )
2926, 28sylan2b 483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (  _E  We  B  /\  ( ( y  e.  B  /\  z  e.  B )  /\  x  e.  B ) )  -> 
( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) )
3029exp44 624 . . . . . . . . . . . . . . . . . . . 20  |-  (  _E  We  B  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( x  e.  B  ->  ( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) ) )
3130imp 436 . . . . . . . . . . . . . . . . . . 19  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  B  ->  ( x  e.  B  ->  ( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) )
3231com34 85 . . . . . . . . . . . . . . . . . 18  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  B  ->  ( z  e.  x  ->  ( x  e.  B  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) )
3332impd 438 . . . . . . . . . . . . . . . . 17  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( z  e.  B  /\  z  e.  x )  ->  (
x  e.  B  -> 
( x  e.  y  ->  z  e.  y ) ) ) )
3423, 33syl5bi 225 . . . . . . . . . . . . . . . 16  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  ( B  i^i  x )  ->  ( x  e.  B  ->  ( x  e.  y  ->  z  e.  y ) ) ) )
3534imp4a 600 . . . . . . . . . . . . . . 15  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  ( B  i^i  x )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  z  e.  y ) ) )
3635com23 80 . . . . . . . . . . . . . 14  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  (
z  e.  ( B  i^i  x )  -> 
z  e.  y ) ) )
3736ralrimdv 2811 . . . . . . . . . . . . 13  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  A. z  e.  ( B  i^i  x
) z  e.  y ) )
38 dfss3 3408 . . . . . . . . . . . . 13  |-  ( ( B  i^i  x ) 
C_  y  <->  A. z  e.  ( B  i^i  x
) z  e.  y )
3937, 38syl6ibr 235 . . . . . . . . . . . 12  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  ( B  i^i  x )  C_  y ) )
40 dfss 3405 . . . . . . . . . . . . . . 15  |-  ( ( B  i^i  x ) 
C_  y  <->  ( B  i^i  x )  =  ( ( B  i^i  x
)  i^i  y )
)
41 in32 3635 . . . . . . . . . . . . . . . 16  |-  ( ( B  i^i  x )  i^i  y )  =  ( ( B  i^i  y )  i^i  x
)
4241eqeq2i 2483 . . . . . . . . . . . . . . 15  |-  ( ( B  i^i  x )  =  ( ( B  i^i  x )  i^i  y )  <->  ( B  i^i  x )  =  ( ( B  i^i  y
)  i^i  x )
)
4340, 42sylbb 202 . . . . . . . . . . . . . 14  |-  ( ( B  i^i  x ) 
C_  y  ->  ( B  i^i  x )  =  ( ( B  i^i  y )  i^i  x
) )
4443eqeq1d 2473 . . . . . . . . . . . . 13  |-  ( ( B  i^i  x ) 
C_  y  ->  (
( B  i^i  x
)  =  (/)  <->  ( ( B  i^i  y )  i^i  x )  =  (/) ) )
4544biimprd 231 . . . . . . . . . . . 12  |-  ( ( B  i^i  x ) 
C_  y  ->  (
( ( B  i^i  y )  i^i  x
)  =  (/)  ->  ( B  i^i  x )  =  (/) ) )
4639, 45syl6 33 . . . . . . . . . . 11  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  (
( ( B  i^i  y )  i^i  x
)  =  (/)  ->  ( B  i^i  x )  =  (/) ) ) )
4746expd 443 . . . . . . . . . 10  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( x  e.  B  ->  ( x  e.  y  ->  ( ( ( B  i^i  y )  i^i  x )  =  (/)  ->  ( B  i^i  x )  =  (/) ) ) ) )
4847imp4a 600 . . . . . . . . 9  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( x  e.  B  ->  ( ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) )  ->  ( B  i^i  x )  =  (/) ) ) )
4948reximdvai 2856 . . . . . . . 8  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( E. x  e.  B  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
5022, 49syld 44 . . . . . . 7  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
517, 50pm2.61dne 2729 . . . . . 6  |-  ( (  _E  We  B  /\  y  e.  B )  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) )
5251ex 441 . . . . 5  |-  (  _E  We  B  ->  (
y  e.  B  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
5352exlimdv 1787 . . . 4  |-  (  _E  We  B  ->  ( E. y  y  e.  B  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
542, 53syl5bi 225 . . 3  |-  (  _E  We  B  ->  ( B  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
551, 54syl6com 35 . 2  |-  (  _E  We  A  ->  ( B  C_  A  ->  ( B  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) ) )
56553imp 1224 1  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    i^i cin 3389    C_ wss 3390   (/)c0 3722    _E cep 4748    Fr wfr 4795    We wwe 4797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-eprel 4750  df-po 4760  df-so 4761  df-fr 4798  df-we 4800
This theorem is referenced by:  tz7.5  5451  onnseq  7081  finminlem  31045
  Copyright terms: Public domain W3C validator