MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomtr Structured version   Unicode version

Theorem wdomtr 7795
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomtr  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  X  ~<_*  Z )

Proof of Theorem wdomtr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relwdom 7786 . . . . 5  |-  Rel  ~<_*
21brrelex2i 4885 . . . 4  |-  ( Y  ~<_*  Z  ->  Z  e.  _V )
32adantl 466 . . 3  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  Z  e.  _V )
4 0wdom 7790 . . . 4  |-  ( Z  e.  _V  ->  (/)  ~<_*  Z )
5 breq1 4300 . . . 4  |-  ( X  =  (/)  ->  ( X  ~<_*  Z 
<->  (/) 
~<_* 
Z ) )
64, 5syl5ibrcom 222 . . 3  |-  ( Z  e.  _V  ->  ( X  =  (/)  ->  X  ~<_*  Z ) )
73, 6syl 16 . 2  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  ( X  =  (/)  ->  X  ~<_*  Z ) )
8 simpll 753 . . . . 5  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  X  ~<_*  Y )
9 brwdomn0 7789 . . . . . 6  |-  ( X  =/=  (/)  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
109adantl 466 . . . . 5  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
118, 10mpbid 210 . . . 4  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  E. z 
z : Y -onto-> X
)
12 simpllr 758 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  Y  ~<_*  Z )
13 simplr 754 . . . . . . . 8  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  X  =/=  (/) )
14 dm0rn0 5061 . . . . . . . . . . . 12  |-  ( dom  z  =  (/)  <->  ran  z  =  (/) )
1514necon3bii 2645 . . . . . . . . . . 11  |-  ( dom  z  =/=  (/)  <->  ran  z  =/=  (/) )
1615a1i 11 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( dom  z  =/=  (/)  <->  ran  z  =/=  (/) ) )
17 fof 5625 . . . . . . . . . . . 12  |-  ( z : Y -onto-> X  -> 
z : Y --> X )
18 fdm 5568 . . . . . . . . . . . 12  |-  ( z : Y --> X  ->  dom  z  =  Y
)
1917, 18syl 16 . . . . . . . . . . 11  |-  ( z : Y -onto-> X  ->  dom  z  =  Y
)
2019neeq1d 2626 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( dom  z  =/=  (/)  <->  Y  =/=  (/) ) )
21 forn 5628 . . . . . . . . . . 11  |-  ( z : Y -onto-> X  ->  ran  z  =  X
)
2221neeq1d 2626 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( ran  z  =/=  (/)  <->  X  =/=  (/) ) )
2316, 20, 223bitr3rd 284 . . . . . . . . 9  |-  ( z : Y -onto-> X  -> 
( X  =/=  (/)  <->  Y  =/=  (/) ) )
2423adantl 466 . . . . . . . 8  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( X  =/=  (/)  <->  Y  =/=  (/) ) )
2513, 24mpbid 210 . . . . . . 7  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  Y  =/=  (/) )
26 brwdomn0 7789 . . . . . . 7  |-  ( Y  =/=  (/)  ->  ( Y  ~<_*  Z  <->  E. y  y : Z -onto-> Y ) )
2725, 26syl 16 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( Y  ~<_*  Z  <->  E. y  y : Z -onto-> Y ) )
2812, 27mpbid 210 . . . . 5  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  E. y 
y : Z -onto-> Y
)
29 vex 2980 . . . . . . . . . 10  |-  z  e. 
_V
30 vex 2980 . . . . . . . . . 10  |-  y  e. 
_V
3129, 30coex 6534 . . . . . . . . 9  |-  ( z  o.  y )  e. 
_V
32 foco 5635 . . . . . . . . 9  |-  ( ( z : Y -onto-> X  /\  y : Z -onto-> Y
)  ->  ( z  o.  y ) : Z -onto-> X )
33 fowdom 7791 . . . . . . . . 9  |-  ( ( ( z  o.  y
)  e.  _V  /\  ( z  o.  y
) : Z -onto-> X
)  ->  X  ~<_*  Z )
3431, 32, 33sylancr 663 . . . . . . . 8  |-  ( ( z : Y -onto-> X  /\  y : Z -onto-> Y
)  ->  X  ~<_*  Z )
3534adantl 466 . . . . . . 7  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  (
z : Y -onto-> X  /\  y : Z -onto-> Y
) )  ->  X  ~<_*  Z )
3635expr 615 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  (
y : Z -onto-> Y  ->  X  ~<_*  Z ) )
3736exlimdv 1690 . . . . 5  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( E. y  y : Z -onto-> Y  ->  X  ~<_*  Z
) )
3828, 37mpd 15 . . . 4  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  X  ~<_*  Z )
3911, 38exlimddv 1692 . . 3  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  X  ~<_*  Z )
4039ex 434 . 2  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  ( X  =/=  (/)  ->  X  ~<_*  Z ) )
417, 40pm2.61dne 2693 1  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  X  ~<_*  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2611   _Vcvv 2977   (/)c0 3642   class class class wbr 4297   dom cdm 4845   ran crn 4846    o. ccom 4849   -->wf 5419   -onto->wfo 5421    ~<_* cwdom 7777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-fun 5425  df-fn 5426  df-f 5427  df-fo 5429  df-wdom 7779
This theorem is referenced by:  wdomen1  7796  wdomen2  7797  wdom2d  7800  wdomima2g  7806  unxpwdom2  7808  unxpwdom  7809  harwdom  7810  pwcdadom  8390  hsmexlem1  8600  hsmexlem4  8603
  Copyright terms: Public domain W3C validator