MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomtr Structured version   Unicode version

Theorem wdomtr 7997
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomtr  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  X  ~<_*  Z )

Proof of Theorem wdomtr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relwdom 7988 . . . . 5  |-  Rel  ~<_*
21brrelex2i 5040 . . . 4  |-  ( Y  ~<_*  Z  ->  Z  e.  _V )
32adantl 466 . . 3  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  Z  e.  _V )
4 0wdom 7992 . . . 4  |-  ( Z  e.  _V  ->  (/)  ~<_*  Z )
5 breq1 4450 . . . 4  |-  ( X  =  (/)  ->  ( X  ~<_*  Z 
<->  (/) 
~<_* 
Z ) )
64, 5syl5ibrcom 222 . . 3  |-  ( Z  e.  _V  ->  ( X  =  (/)  ->  X  ~<_*  Z ) )
73, 6syl 16 . 2  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  ( X  =  (/)  ->  X  ~<_*  Z ) )
8 simpll 753 . . . . 5  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  X  ~<_*  Y )
9 brwdomn0 7991 . . . . . 6  |-  ( X  =/=  (/)  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
109adantl 466 . . . . 5  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
118, 10mpbid 210 . . . 4  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  E. z 
z : Y -onto-> X
)
12 simpllr 758 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  Y  ~<_*  Z )
13 simplr 754 . . . . . . . 8  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  X  =/=  (/) )
14 dm0rn0 5217 . . . . . . . . . . . 12  |-  ( dom  z  =  (/)  <->  ran  z  =  (/) )
1514necon3bii 2735 . . . . . . . . . . 11  |-  ( dom  z  =/=  (/)  <->  ran  z  =/=  (/) )
1615a1i 11 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( dom  z  =/=  (/)  <->  ran  z  =/=  (/) ) )
17 fof 5793 . . . . . . . . . . . 12  |-  ( z : Y -onto-> X  -> 
z : Y --> X )
18 fdm 5733 . . . . . . . . . . . 12  |-  ( z : Y --> X  ->  dom  z  =  Y
)
1917, 18syl 16 . . . . . . . . . . 11  |-  ( z : Y -onto-> X  ->  dom  z  =  Y
)
2019neeq1d 2744 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( dom  z  =/=  (/)  <->  Y  =/=  (/) ) )
21 forn 5796 . . . . . . . . . . 11  |-  ( z : Y -onto-> X  ->  ran  z  =  X
)
2221neeq1d 2744 . . . . . . . . . 10  |-  ( z : Y -onto-> X  -> 
( ran  z  =/=  (/)  <->  X  =/=  (/) ) )
2316, 20, 223bitr3rd 284 . . . . . . . . 9  |-  ( z : Y -onto-> X  -> 
( X  =/=  (/)  <->  Y  =/=  (/) ) )
2423adantl 466 . . . . . . . 8  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( X  =/=  (/)  <->  Y  =/=  (/) ) )
2513, 24mpbid 210 . . . . . . 7  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  Y  =/=  (/) )
26 brwdomn0 7991 . . . . . . 7  |-  ( Y  =/=  (/)  ->  ( Y  ~<_*  Z  <->  E. y  y : Z -onto-> Y ) )
2725, 26syl 16 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( Y  ~<_*  Z  <->  E. y  y : Z -onto-> Y ) )
2812, 27mpbid 210 . . . . 5  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  E. y 
y : Z -onto-> Y
)
29 vex 3116 . . . . . . . . . 10  |-  z  e. 
_V
30 vex 3116 . . . . . . . . . 10  |-  y  e. 
_V
3129, 30coex 6733 . . . . . . . . 9  |-  ( z  o.  y )  e. 
_V
32 foco 5803 . . . . . . . . 9  |-  ( ( z : Y -onto-> X  /\  y : Z -onto-> Y
)  ->  ( z  o.  y ) : Z -onto-> X )
33 fowdom 7993 . . . . . . . . 9  |-  ( ( ( z  o.  y
)  e.  _V  /\  ( z  o.  y
) : Z -onto-> X
)  ->  X  ~<_*  Z )
3431, 32, 33sylancr 663 . . . . . . . 8  |-  ( ( z : Y -onto-> X  /\  y : Z -onto-> Y
)  ->  X  ~<_*  Z )
3534adantl 466 . . . . . . 7  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  (
z : Y -onto-> X  /\  y : Z -onto-> Y
) )  ->  X  ~<_*  Z )
3635expr 615 . . . . . 6  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  (
y : Z -onto-> Y  ->  X  ~<_*  Z ) )
3736exlimdv 1700 . . . . 5  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  ( E. y  y : Z -onto-> Y  ->  X  ~<_*  Z
) )
3828, 37mpd 15 . . . 4  |-  ( ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z )  /\  X  =/=  (/) )  /\  z : Y -onto-> X )  ->  X  ~<_*  Z )
3911, 38exlimddv 1702 . . 3  |-  ( ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  /\  X  =/=  (/) )  ->  X  ~<_*  Z )
4039ex 434 . 2  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  ( X  =/=  (/)  ->  X  ~<_*  Z ) )
417, 40pm2.61dne 2784 1  |-  ( ( X  ~<_*  Y  /\  Y  ~<_*  Z
)  ->  X  ~<_*  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   _Vcvv 3113   (/)c0 3785   class class class wbr 4447   dom cdm 4999   ran crn 5000    o. ccom 5003   -->wf 5582   -onto->wfo 5584    ~<_* cwdom 7979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-fun 5588  df-fn 5589  df-f 5590  df-fo 5592  df-wdom 7981
This theorem is referenced by:  wdomen1  7998  wdomen2  7999  wdom2d  8002  wdomima2g  8008  unxpwdom2  8010  unxpwdom  8011  harwdom  8012  pwcdadom  8592  hsmexlem1  8802  hsmexlem4  8805
  Copyright terms: Public domain W3C validator