MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomima2g Structured version   Unicode version

Theorem wdomima2g 7801
Description: A set is weakly dominant over its image under any function. This version of wdomimag 7802 is stated so as to avoid ax-rep 4403. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomima2g  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ( F " A )  ~<_*  A
)

Proof of Theorem wdomima2g
StepHypRef Expression
1 df-ima 4853 . 2  |-  ( F
" A )  =  ran  ( F  |`  A )
2 funres 5457 . . . . . . . 8  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
3 funforn 5627 . . . . . . . 8  |-  ( Fun  ( F  |`  A )  <-> 
( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A ) )
42, 3sylib 196 . . . . . . 7  |-  ( Fun 
F  ->  ( F  |`  A ) : dom  ( F  |`  A )
-onto->
ran  ( F  |`  A ) )
543ad2ant1 1009 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A ) )
6 fof 5620 . . . . . 6  |-  ( ( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A )  -> 
( F  |`  A ) : dom  ( F  |`  A ) --> ran  ( F  |`  A ) )
75, 6syl 16 . . . . 5  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ( F  |`  A ) : dom  ( F  |`  A ) --> ran  ( F  |`  A ) )
8 dmres 5131 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
9 inss1 3570 . . . . . . 7  |-  ( A  i^i  dom  F )  C_  A
108, 9eqsstri 3386 . . . . . 6  |-  dom  ( F  |`  A )  C_  A
11 simp2 989 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  A  e.  V )
12 ssexg 4438 . . . . . 6  |-  ( ( dom  ( F  |`  A )  C_  A  /\  A  e.  V
)  ->  dom  ( F  |`  A )  e.  _V )
1310, 11, 12sylancr 663 . . . . 5  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  dom  ( F  |`  A )  e.  _V )
14 simp3 990 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ( F " A )  e.  W )
151, 14syl5eqelr 2528 . . . . 5  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ran  ( F  |`  A )  e.  W )
16 fex2 6532 . . . . 5  |-  ( ( ( F  |`  A ) : dom  ( F  |`  A ) --> ran  ( F  |`  A )  /\  dom  ( F  |`  A )  e.  _V  /\  ran  ( F  |`  A )  e.  W )  -> 
( F  |`  A )  e.  _V )
177, 13, 15, 16syl3anc 1218 . . . 4  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ( F  |`  A )  e. 
_V )
18 fowdom 7786 . . . 4  |-  ( ( ( F  |`  A )  e.  _V  /\  ( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A ) )  ->  ran  ( F  |`  A )  ~<_*  dom  ( F  |`  A ) )
1917, 5, 18syl2anc 661 . . 3  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ran  ( F  |`  A )  ~<_*  dom  ( F  |`  A ) )
20 ssdomg 7355 . . . . . 6  |-  ( A  e.  V  ->  ( dom  ( F  |`  A ) 
C_  A  ->  dom  ( F  |`  A )  ~<_  A ) )
2110, 20mpi 17 . . . . 5  |-  ( A  e.  V  ->  dom  ( F  |`  A )  ~<_  A )
22 domwdom 7789 . . . . 5  |-  ( dom  ( F  |`  A )  ~<_  A  ->  dom  ( F  |`  A )  ~<_*  A )
2321, 22syl 16 . . . 4  |-  ( A  e.  V  ->  dom  ( F  |`  A )  ~<_*  A )
24233ad2ant2 1010 . . 3  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  dom  ( F  |`  A )  ~<_*  A )
25 wdomtr 7790 . . 3  |-  ( ( ran  ( F  |`  A )  ~<_*  dom  ( F  |`  A )  /\  dom  ( F  |`  A )  ~<_*  A )  ->  ran  ( F  |`  A )  ~<_*  A )
2619, 24, 25syl2anc 661 . 2  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ran  ( F  |`  A )  ~<_*  A )
271, 26syl5eqbr 4325 1  |-  ( ( Fun  F  /\  A  e.  V  /\  ( F " A )  e.  W )  ->  ( F " A )  ~<_*  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    e. wcel 1756   _Vcvv 2972    i^i cin 3327    C_ wss 3328   class class class wbr 4292   dom cdm 4840   ran crn 4841    |` cres 4842   "cima 4843   Fun wfun 5412   -->wf 5414   -onto->wfo 5416    ~<_ cdom 7308    ~<_* cwdom 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-wdom 7774
This theorem is referenced by:  wdomimag  7802  unxpwdom2  7803
  Copyright terms: Public domain W3C validator