MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wceq Structured version   Unicode version

Syntax Definition wceq 1438
Description: Extend wff definition to include class equality.

For a general discussion of the theory of classes, see http://us.metamath.org/mpeuni/mmset.html#class.

(The purpose of introducing 
wff  A  =  B here, and not in set theory where it belongs, is to allow us to express i.e. "prove" the weq 1785 of predicate calculus in terms of the wceq 1438 of set theory, so that we don't "overload" the  = connective with two syntax definitions. This is done to prevent ambiguity that would complicate some Metamath parsers. For example, some parsers - although not the Metamath program - stumble on the fact that the  = in  x  =  y could be the  = of either weq 1785 or wceq 1438, although mathematically it makes no difference. The class variables  A and  B are introduced temporarily for the purpose of this definition but otherwise not used in predicate calculus. See df-cleq 2415 for more information on the set theory usage of wceq 1438.)

Hypotheses
Ref Expression
cA.wceq  class  A
cB.wceq  class  B
Assertion
Ref Expression
wceq  wff  A  =  B

See definition df-tru 1441 for more information.

Colors of variables: wff setvar class
  Copyright terms: Public domain W3C validator