Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Unicode version

Theorem wallispilem5 37499
Description: The sequence  H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
wallispilem5.2  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
wallispilem5.3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
wallispilem5.4  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
wallispilem5.5  |-  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) ) )
Assertion
Ref Expression
wallispilem5  |-  H  ~~>  1
Distinct variable groups:    k, n, x    x, F    k, G    k, L
Allowed substitution hints:    F( k, n)    G( x, n)    H( x, k, n)    I( x, k, n)    L( x, n)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
2 wallispilem5.2 . . 3  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
3 wallispilem5.3 . . 3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
4 wallispilem5.4 . . 3  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
51, 2, 3, 4wallispilem4 37498 . 2  |-  G  =  H
6 nnuz 11194 . . . 4  |-  NN  =  ( ZZ>= `  1 )
7 1zzd 10968 . . . 4  |-  ( T. 
->  1  e.  ZZ )
8 wallispilem5.5 . . . . 5  |-  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) ) )
9 2cnd 10682 . . . . 5  |-  ( T. 
->  2  e.  CC )
10 2ne0 10702 . . . . . 6  |-  2  =/=  0
1110a1i 11 . . . . 5  |-  ( T. 
->  2  =/=  0
)
12 1cnd 9658 . . . . 5  |-  ( T. 
->  1  e.  CC )
138, 9, 11, 12clim1fr1 37250 . . . 4  |-  ( T. 
->  L  ~~>  1 )
14 nnex 10615 . . . . . . 7  |-  NN  e.  _V
1514mptex 6151 . . . . . 6  |-  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n ) )  /  ( I `  ( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
163, 15eqeltri 2513 . . . . 5  |-  G  e. 
_V
1716a1i 11 . . . 4  |-  ( T. 
->  G  e.  _V )
18 2nn0 10886 . . . . . . . . . . . 12  |-  2  e.  NN0
1918a1i 11 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  2  e.  NN0 )
20 nnnn0 10876 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  n  e.  NN0 )
2119, 20nn0mulcld 10930 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  NN0 )
22 1nn0 10885 . . . . . . . . . . 11  |-  1  e.  NN0
2322a1i 11 . . . . . . . . . 10  |-  ( n  e.  NN  ->  1  e.  NN0 )
2421, 23nn0addcld 10929 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  NN0 )
2524nn0red 10926 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
2621nn0red 10926 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
27 2cnd 10682 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  e.  CC )
28 nncn 10617 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  CC )
2910a1i 11 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  =/=  0 )
30 nnne0 10642 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  =/=  0 )
3127, 28, 29, 30mulne0d 10263 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  =/=  0 )
3225, 26, 31redivcld 10434 . . . . . . 7  |-  ( n  e.  NN  ->  (
( ( 2  x.  n )  +  1 )  /  ( 2  x.  n ) )  e.  RR )
338, 32fmpti 6060 . . . . . 6  |-  L : NN
--> RR
3433a1i 11 . . . . 5  |-  ( T. 
->  L : NN --> RR )
3534ffvelrnda 6037 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( L `  k )  e.  RR )
362wallispilem3 37497 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  NN0  ->  ( I `
 ( 2  x.  n ) )  e.  RR+ )
3721, 36syl 17 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
I `  ( 2  x.  n ) )  e.  RR+ )
3837rpred 11341 . . . . . . . 8  |-  ( n  e.  NN  ->  (
I `  ( 2  x.  n ) )  e.  RR )
392wallispilem3 37497 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  n )  +  1 ) )  e.  RR+ )
4024, 39syl 17 . . . . . . . 8  |-  ( n  e.  NN  ->  (
I `  ( (
2  x.  n )  +  1 ) )  e.  RR+ )
4138, 40rerpdivcld 11369 . . . . . . 7  |-  ( n  e.  NN  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  e.  RR )
423, 41fmpti 6060 . . . . . 6  |-  G : NN
--> RR
4342a1i 11 . . . . 5  |-  ( T. 
->  G : NN --> RR )
4443ffvelrnda 6037 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
4518a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  2  e.  NN0 )
46 nnnn0 10876 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
4745, 46nn0mulcld 10930 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  NN0 )
482wallispilem3 37497 . . . . . . . . . 10  |-  ( ( 2  x.  k )  e.  NN0  ->  ( I `
 ( 2  x.  k ) )  e.  RR+ )
4947, 48syl 17 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  e.  RR+ )
5049rpred 11341 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  e.  RR )
51 2nn 10767 . . . . . . . . . . . . 13  |-  2  e.  NN
5251a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  NN )
53 id 23 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN )
5452, 53nnmulcld 10657 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  NN )
55 nnm1nn0 10911 . . . . . . . . . . 11  |-  ( ( 2  x.  k )  e.  NN  ->  (
( 2  x.  k
)  -  1 )  e.  NN0 )
5654, 55syl 17 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  1 )  e.  NN0 )
572wallispilem3 37497 . . . . . . . . . 10  |-  ( ( ( 2  x.  k
)  -  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  k )  - 
1 ) )  e.  RR+ )
5856, 57syl 17 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  RR+ )
5958rpred 11341 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  RR )
6022a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  NN0 )
6147, 60nn0addcld 10929 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  NN0 )
622wallispilem3 37497 . . . . . . . . 9  |-  ( ( ( 2  x.  k
)  +  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  k )  +  1 ) )  e.  RR+ )
6361, 62syl 17 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  RR+ )
64 2cnd 10682 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  CC )
65 nncn 10617 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  CC )
6664, 65mulcld 9662 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  CC )
67 1cnd 9658 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  1  e.  CC )
6866, 67npcand 9989 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  -  1 )  +  1 )  =  ( 2  x.  k ) )
6968fveq2d 5885 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  -  1 )  +  1 ) )  =  ( I `  ( 2  x.  k
) ) )
702, 56wallispilem1 37495 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  -  1 )  +  1 ) )  <_  ( I `  ( ( 2  x.  k )  -  1 ) ) )
7169, 70eqbrtrrd 4448 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  <_ 
( I `  (
( 2  x.  k
)  -  1 ) ) )
7250, 59, 63, 71lediv1dd 11396 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
7366, 67addcld 9661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  CC )
7410a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  2  =/=  0 )
75 nnne0 10642 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  =/=  0 )
7664, 65, 74, 75mulne0d 10263 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  x.  k )  =/=  0 )
7773, 66, 76divcld 10382 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  /  ( 2  x.  k ) )  e.  CC )
7863rpcnd 11343 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  CC )
7963rpne0d 11346 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =/=  0 )
8077, 78, 79divcan4d 10388 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
I `  ( (
2  x.  k )  +  1 ) ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
81 2re 10679 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
8281a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  e.  RR )
83 nnre 10616 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  RR )
8482, 83remulcld 9670 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  RR )
85 1red 9657 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  1  e.  RR )
8684, 85readdcld 9669 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR )
8745nn0ge0d 10928 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  0  <_  2 )
88 nnge1 10635 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  1  <_  k )
8982, 83, 87, 88lemulge11d 10544 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  <_  ( 2  x.  k
) )
9084ltp1d 10537 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
2  x.  k )  <  ( ( 2  x.  k )  +  1 ) )
9182, 84, 86, 89, 90lelttrd 9792 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  <  ( ( 2  x.  k )  +  1 ) )
9282, 86, 91ltled 9782 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  2  <_  ( ( 2  x.  k )  +  1 ) )
9345nn0zd 11038 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  e.  ZZ )
9461nn0zd 11038 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  ZZ )
95 eluz 11172 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  e.  ZZ )  ->  ( ( ( 2  x.  k )  +  1 )  e.  ( ZZ>= `  2 )  <->  2  <_  ( ( 2  x.  k )  +  1 ) ) )
9693, 94, 95syl2anc 665 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  e.  ( ZZ>= ` 
2 )  <->  2  <_  ( ( 2  x.  k
)  +  1 ) ) )
9792, 96mpbird 235 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  ( ZZ>= `  2
) )
982, 97itgsinexp 37399 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =  ( ( ( ( ( 2  x.  k )  +  1 )  -  1 )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( ( 2  x.  k )  +  1 )  -  2 ) ) ) )
9966, 67pncand 9986 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  -  1 )  =  ( 2  x.  k ) )
10099oveq1d 6320 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  -  1 )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) ) )
101 1e2m1 10725 . . . . . . . . . . . . . . . . 17  |-  1  =  ( 2  -  1 )
102101a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  1  =  ( 2  -  1 ) )
103102oveq2d 6321 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  k )  -  ( 2  -  1 ) ) )
10466, 64, 67subsub3d 10015 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  ( 2  -  1 ) )  =  ( ( ( 2  x.  k )  +  1 )  - 
2 ) )
105103, 104eqtr2d 2471 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  -  2 )  =  ( ( 2  x.  k )  - 
1 ) )
106105fveq2d 5885 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  +  1 )  -  2 ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
107100, 106oveq12d 6323 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  - 
1 )  /  (
( 2  x.  k
)  +  1 ) )  x.  ( I `
 ( ( ( 2  x.  k )  +  1 )  - 
2 ) ) )  =  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
10898, 107eqtrd 2470 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
109108oveq2d 6321 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) )  x.  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) )  x.  (
I `  ( (
2  x.  k )  -  1 ) ) ) ) )
11054peano2nnd 10626 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  NN )
111110nnne0d 10654 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  =/=  0 )
11266, 73, 111divcld 10382 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
11358rpcnd 11343 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  CC )
11477, 112, 113mulassd 9665 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) )  x.  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) )  x.  (
I `  ( (
2  x.  k )  -  1 ) ) ) ) )
11573, 66, 111, 76divcan6d 10401 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  1 )
116115oveq1d 6320 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( 1  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
117113mulid2d 9660 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
1  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
118116, 117eqtrd 2470 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
119109, 114, 1183eqtr2d 2476 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
120119oveq1d 6320 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
I `  ( (
2  x.  k )  +  1 ) ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
12180, 120eqtr3d 2472 . . . . . . 7  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  /  ( 2  x.  k ) )  =  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
12272, 121breqtrrd 4452 . . . . . 6  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
12349, 63rpdivcld 11358 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  e.  RR+ )
124 nfcv 2591 . . . . . . . 8  |-  F/_ n
k
125 nfmpt1 4515 . . . . . . . . . . 11  |-  F/_ n
( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
1262, 125nfcxfr 2589 . . . . . . . . . 10  |-  F/_ n I
127 nfcv 2591 . . . . . . . . . 10  |-  F/_ n
( 2  x.  k
)
128126, 127nffv 5888 . . . . . . . . 9  |-  F/_ n
( I `  (
2  x.  k ) )
129 nfcv 2591 . . . . . . . . 9  |-  F/_ n  /
130 nfcv 2591 . . . . . . . . . 10  |-  F/_ n
( ( 2  x.  k )  +  1 )
131126, 130nffv 5888 . . . . . . . . 9  |-  F/_ n
( I `  (
( 2  x.  k
)  +  1 ) )
132128, 129, 131nfov 6331 . . . . . . . 8  |-  F/_ n
( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) )
133 oveq2 6313 . . . . . . . . . 10  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
134133fveq2d 5885 . . . . . . . . 9  |-  ( n  =  k  ->  (
I `  ( 2  x.  n ) )  =  ( I `  (
2  x.  k ) ) )
135133oveq1d 6320 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
136135fveq2d 5885 . . . . . . . . 9  |-  ( n  =  k  ->  (
I `  ( (
2  x.  n )  +  1 ) )  =  ( I `  ( ( 2  x.  k )  +  1 ) ) )
137134, 136oveq12d 6323 . . . . . . . 8  |-  ( n  =  k  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
138124, 132, 137, 3fvmptf 5982 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) )  e.  RR+ )  ->  ( G `  k
)  =  ( ( I `  ( 2  x.  k ) )  /  ( I `  ( ( 2  x.  k )  +  1 ) ) ) )
139123, 138mpdan 672 . . . . . 6  |-  ( k  e.  NN  ->  ( G `  k )  =  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
1408a1i 11 . . . . . . 7  |-  ( k  e.  NN  ->  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  n
) ) ) )
141 simpr 462 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  n  =  k )
142141oveq2d 6321 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 2  x.  n
)  =  ( 2  x.  k ) )
143142oveq1d 6320 . . . . . . . 8  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
144143, 142oveq12d 6323 . . . . . . 7  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) )  =  ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) ) )
145140, 144, 53, 77fvmptd 5970 . . . . . 6  |-  ( k  e.  NN  ->  ( L `  k )  =  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
146122, 139, 1453brtr4d 4456 . . . . 5  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( L `  k
) )
147146adantl 467 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( L `  k
) )
14878, 79dividd 10380 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
( 2  x.  k
)  +  1 ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  1 )
14963rpred 11341 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  RR )
1502, 47wallispilem1 37495 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  <_  ( I `  ( 2  x.  k
) ) )
151149, 50, 63, 150lediv1dd 11396 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
( 2  x.  k
)  +  1 ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
152148, 151eqbrtrrd 4448 . . . . . 6  |-  ( k  e.  NN  ->  1  <_  ( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) ) )
153152, 139breqtrrd 4452 . . . . 5  |-  ( k  e.  NN  ->  1  <_  ( G `  k
) )
154153adantl 467 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  1  <_  ( G `  k
) )
1556, 7, 13, 17, 35, 44, 147, 154climsqz2 13683 . . 3  |-  ( T. 
->  G  ~~>  1 )
156155trud 1446 . 2  |-  G  ~~>  1
1575, 156eqbrtrri 4447 1  |-  H  ~~>  1
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   T. wtru 1438    e. wcel 1870    =/= wne 2625   _Vcvv 3087   class class class wbr 4426    |-> cmpt 4484   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543    <_ cle 9675    - cmin 9859    / cdiv 10268   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   (,)cioo 11635    seqcseq 12210   ^cexp 12269    ~~> cli 13526   sincsin 14094   picpi 14097   S.citg 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cc 8863  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-acn 8375  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-cmp 20333  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-ovol 22296  df-vol 22297  df-mbf 22454  df-itg1 22455  df-itg2 22456  df-ibl 22457  df-itg 22458  df-0p 22505  df-limc 22698  df-dv 22699
This theorem is referenced by:  wallispi  37500
  Copyright terms: Public domain W3C validator