Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Unicode version

Theorem wallispilem5 30002
Description: The sequence  H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
wallispilem5.2  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
wallispilem5.3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
wallispilem5.4  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
wallispilem5.5  |-  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) ) )
Assertion
Ref Expression
wallispilem5  |-  H  ~~>  1
Distinct variable groups:    k, n, x    x, F    k, G    k, L
Allowed substitution hints:    F( k, n)    G( x, n)    H( x, k, n)    I( x, k, n)    L( x, n)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
2 wallispilem5.2 . . 3  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
3 wallispilem5.3 . . 3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
4 wallispilem5.4 . . 3  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
51, 2, 3, 4wallispilem4 30001 . 2  |-  G  =  H
6 nnuz 10997 . . . 4  |-  NN  =  ( ZZ>= `  1 )
7 1z 10777 . . . . 5  |-  1  e.  ZZ
87a1i 11 . . . 4  |-  ( T. 
->  1  e.  ZZ )
9 wallispilem5.5 . . . . 5  |-  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) ) )
10 2cnd 10495 . . . . 5  |-  ( T. 
->  2  e.  CC )
11 2ne0 10515 . . . . . 6  |-  2  =/=  0
1211a1i 11 . . . . 5  |-  ( T. 
->  2  =/=  0
)
138zcnd 10849 . . . . 5  |-  ( T. 
->  1  e.  CC )
149, 10, 12, 13clim1fr1 29912 . . . 4  |-  ( T. 
->  L  ~~>  1 )
15 nnex 10429 . . . . . . 7  |-  NN  e.  _V
1615mptex 6047 . . . . . 6  |-  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n ) )  /  ( I `  ( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
173, 16eqeltri 2535 . . . . 5  |-  G  e. 
_V
1817a1i 11 . . . 4  |-  ( T. 
->  G  e.  _V )
19 2nn0 10697 . . . . . . . . . . . 12  |-  2  e.  NN0
2019a1i 11 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  2  e.  NN0 )
21 nnnn0 10687 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  n  e.  NN0 )
2220, 21nn0mulcld 10742 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  NN0 )
23 1nn0 10696 . . . . . . . . . . 11  |-  1  e.  NN0
2423a1i 11 . . . . . . . . . 10  |-  ( n  e.  NN  ->  1  e.  NN0 )
2522, 24nn0addcld 10741 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  NN0 )
2625nn0red 10738 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
2722nn0red 10738 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
28 2cnd 10495 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  e.  CC )
29 nncn 10431 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  CC )
3011a1i 11 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  =/=  0 )
31 nnne0 10455 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  =/=  0 )
3228, 29, 30, 31mulne0d 10089 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  =/=  0 )
3326, 27, 32redivcld 10260 . . . . . . 7  |-  ( n  e.  NN  ->  (
( ( 2  x.  n )  +  1 )  /  ( 2  x.  n ) )  e.  RR )
349, 33fmpti 5965 . . . . . 6  |-  L : NN
--> RR
3534a1i 11 . . . . 5  |-  ( T. 
->  L : NN --> RR )
3635ffvelrnda 5942 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( L `  k )  e.  RR )
372wallispilem3 30000 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  NN0  ->  ( I `
 ( 2  x.  n ) )  e.  RR+ )
3822, 37syl 16 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
I `  ( 2  x.  n ) )  e.  RR+ )
3938rpred 11128 . . . . . . . 8  |-  ( n  e.  NN  ->  (
I `  ( 2  x.  n ) )  e.  RR )
402wallispilem3 30000 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  n )  +  1 ) )  e.  RR+ )
4125, 40syl 16 . . . . . . . 8  |-  ( n  e.  NN  ->  (
I `  ( (
2  x.  n )  +  1 ) )  e.  RR+ )
4239, 41rerpdivcld 11155 . . . . . . 7  |-  ( n  e.  NN  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  e.  RR )
433, 42fmpti 5965 . . . . . 6  |-  G : NN
--> RR
4443a1i 11 . . . . 5  |-  ( T. 
->  G : NN --> RR )
4544ffvelrnda 5942 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
4619a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  2  e.  NN0 )
47 nnnn0 10687 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
4846, 47nn0mulcld 10742 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  NN0 )
492wallispilem3 30000 . . . . . . . . . 10  |-  ( ( 2  x.  k )  e.  NN0  ->  ( I `
 ( 2  x.  k ) )  e.  RR+ )
5048, 49syl 16 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  e.  RR+ )
5150rpred 11128 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  e.  RR )
52 2nn 10580 . . . . . . . . . . . . 13  |-  2  e.  NN
5352a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  NN )
54 id 22 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN )
5553, 54nnmulcld 10470 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  NN )
56 nnm1nn0 10722 . . . . . . . . . . 11  |-  ( ( 2  x.  k )  e.  NN  ->  (
( 2  x.  k
)  -  1 )  e.  NN0 )
5755, 56syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  1 )  e.  NN0 )
582wallispilem3 30000 . . . . . . . . . 10  |-  ( ( ( 2  x.  k
)  -  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  k )  - 
1 ) )  e.  RR+ )
5957, 58syl 16 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  RR+ )
6059rpred 11128 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  RR )
6123a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  NN0 )
6248, 61nn0addcld 10741 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  NN0 )
632wallispilem3 30000 . . . . . . . . 9  |-  ( ( ( 2  x.  k
)  +  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  k )  +  1 ) )  e.  RR+ )
6462, 63syl 16 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  RR+ )
65 2cnd 10495 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  CC )
66 nncn 10431 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  CC )
6765, 66mulcld 9507 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  CC )
68 ax-1cn 9441 . . . . . . . . . . . 12  |-  1  e.  CC
6968a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  1  e.  CC )
7067, 69npcand 9824 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  -  1 )  +  1 )  =  ( 2  x.  k ) )
7170fveq2d 5793 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  -  1 )  +  1 ) )  =  ( I `  ( 2  x.  k
) ) )
722, 57wallispilem1 29998 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  -  1 )  +  1 ) )  <_  ( I `  ( ( 2  x.  k )  -  1 ) ) )
7371, 72eqbrtrrd 4412 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  <_ 
( I `  (
( 2  x.  k
)  -  1 ) ) )
7451, 60, 64, 73lediv1dd 11182 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
7567, 69addcld 9506 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  CC )
7611a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  2  =/=  0 )
77 nnne0 10455 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  =/=  0 )
7865, 66, 76, 77mulne0d 10089 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  x.  k )  =/=  0 )
7975, 67, 78divcld 10208 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  /  ( 2  x.  k ) )  e.  CC )
8064rpcnd 11130 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  CC )
8164rpne0d 11133 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =/=  0 )
8279, 80, 81divcan4d 10214 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
I `  ( (
2  x.  k )  +  1 ) ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
83 2re 10492 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
8483a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  e.  RR )
85 nnre 10430 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  RR )
8684, 85remulcld 9515 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  RR )
87 1re 9486 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
8887a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  1  e.  RR )
8986, 88readdcld 9514 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR )
9046nn0ge0d 10740 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  0  <_  2 )
91 nnge1 10449 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  1  <_  k )
9284, 85, 90, 91lemulge11d 10371 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  <_  ( 2  x.  k
) )
9386ltp1d 10364 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
2  x.  k )  <  ( ( 2  x.  k )  +  1 ) )
9484, 86, 89, 92, 93lelttrd 9630 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  <  ( ( 2  x.  k )  +  1 ) )
9584, 89, 94ltled 9623 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  2  <_  ( ( 2  x.  k )  +  1 ) )
9646nn0zd 10846 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  e.  ZZ )
9762nn0zd 10846 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  ZZ )
98 eluz 10975 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  e.  ZZ )  ->  ( ( ( 2  x.  k )  +  1 )  e.  ( ZZ>= `  2 )  <->  2  <_  ( ( 2  x.  k )  +  1 ) ) )
9996, 97, 98syl2anc 661 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  e.  ( ZZ>= ` 
2 )  <->  2  <_  ( ( 2  x.  k
)  +  1 ) ) )
10095, 99mpbird 232 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  ( ZZ>= `  2
) )
1012, 100itgsinexp 29933 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =  ( ( ( ( ( 2  x.  k )  +  1 )  -  1 )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( ( 2  x.  k )  +  1 )  -  2 ) ) ) )
10267, 69pncand 9821 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  -  1 )  =  ( 2  x.  k ) )
103102oveq1d 6205 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  -  1 )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) ) )
104 1e2m1 10538 . . . . . . . . . . . . . . . . 17  |-  1  =  ( 2  -  1 )
105104a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  1  =  ( 2  -  1 ) )
106105oveq2d 6206 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  k )  -  ( 2  -  1 ) ) )
10767, 65, 69subsub3d 9850 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  ( 2  -  1 ) )  =  ( ( ( 2  x.  k )  +  1 )  - 
2 ) )
108106, 107eqtr2d 2493 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  -  2 )  =  ( ( 2  x.  k )  - 
1 ) )
109108fveq2d 5793 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  +  1 )  -  2 ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
110103, 109oveq12d 6208 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  - 
1 )  /  (
( 2  x.  k
)  +  1 ) )  x.  ( I `
 ( ( ( 2  x.  k )  +  1 )  - 
2 ) ) )  =  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
111101, 110eqtrd 2492 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
112111oveq2d 6206 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) )  x.  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) )  x.  (
I `  ( (
2  x.  k )  -  1 ) ) ) ) )
11355peano2nnd 10440 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  NN )
114113nnne0d 10467 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  =/=  0 )
11567, 75, 114divcld 10208 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
11659rpcnd 11130 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  CC )
11779, 115, 116mulassd 9510 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) )  x.  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) )  x.  (
I `  ( (
2  x.  k )  -  1 ) ) ) ) )
11875, 67, 114, 78divcan6d 10227 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  1 )
119118oveq1d 6205 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( 1  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
120116mulid2d 9505 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
1  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
121119, 120eqtrd 2492 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
122112, 117, 1213eqtr2d 2498 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
123122oveq1d 6205 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
I `  ( (
2  x.  k )  +  1 ) ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
12482, 123eqtr3d 2494 . . . . . . 7  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  /  ( 2  x.  k ) )  =  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
12574, 124breqtrrd 4416 . . . . . 6  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
12650, 64rpdivcld 11145 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  e.  RR+ )
127 nfcv 2613 . . . . . . . 8  |-  F/_ n
k
128 nfmpt1 4479 . . . . . . . . . . 11  |-  F/_ n
( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
1292, 128nfcxfr 2611 . . . . . . . . . 10  |-  F/_ n I
130 nfcv 2613 . . . . . . . . . 10  |-  F/_ n
( 2  x.  k
)
131129, 130nffv 5796 . . . . . . . . 9  |-  F/_ n
( I `  (
2  x.  k ) )
132 nfcv 2613 . . . . . . . . 9  |-  F/_ n  /
133 nfcv 2613 . . . . . . . . . 10  |-  F/_ n
( ( 2  x.  k )  +  1 )
134129, 133nffv 5796 . . . . . . . . 9  |-  F/_ n
( I `  (
( 2  x.  k
)  +  1 ) )
135131, 132, 134nfov 6213 . . . . . . . 8  |-  F/_ n
( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) )
136 oveq2 6198 . . . . . . . . . 10  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
137136fveq2d 5793 . . . . . . . . 9  |-  ( n  =  k  ->  (
I `  ( 2  x.  n ) )  =  ( I `  (
2  x.  k ) ) )
138136oveq1d 6205 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
139138fveq2d 5793 . . . . . . . . 9  |-  ( n  =  k  ->  (
I `  ( (
2  x.  n )  +  1 ) )  =  ( I `  ( ( 2  x.  k )  +  1 ) ) )
140137, 139oveq12d 6208 . . . . . . . 8  |-  ( n  =  k  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
141127, 135, 140, 3fvmptf 5889 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) )  e.  RR+ )  ->  ( G `  k
)  =  ( ( I `  ( 2  x.  k ) )  /  ( I `  ( ( 2  x.  k )  +  1 ) ) ) )
142126, 141mpdan 668 . . . . . 6  |-  ( k  e.  NN  ->  ( G `  k )  =  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
1439a1i 11 . . . . . . 7  |-  ( k  e.  NN  ->  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  n
) ) ) )
144 simpr 461 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  n  =  k )
145144oveq2d 6206 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 2  x.  n
)  =  ( 2  x.  k ) )
146145oveq1d 6205 . . . . . . . 8  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
147146, 145oveq12d 6208 . . . . . . 7  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) )  =  ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) ) )
148143, 147, 54, 79fvmptd 5878 . . . . . 6  |-  ( k  e.  NN  ->  ( L `  k )  =  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
149125, 142, 1483brtr4d 4420 . . . . 5  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( L `  k
) )
150149adantl 466 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( L `  k
) )
15180, 81dividd 10206 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
( 2  x.  k
)  +  1 ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  1 )
15264rpred 11128 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  RR )
1532, 48wallispilem1 29998 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  <_  ( I `  ( 2  x.  k
) ) )
154152, 51, 64, 153lediv1dd 11182 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
( 2  x.  k
)  +  1 ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
155151, 154eqbrtrrd 4412 . . . . . 6  |-  ( k  e.  NN  ->  1  <_  ( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) ) )
156155, 142breqtrrd 4416 . . . . 5  |-  ( k  e.  NN  ->  1  <_  ( G `  k
) )
157156adantl 466 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  1  <_  ( G `  k
) )
1586, 8, 14, 18, 36, 45, 150, 157climsqz2 13221 . . 3  |-  ( T. 
->  G  ~~>  1 )
159158trud 1379 . 2  |-  G  ~~>  1
1605, 159eqbrtrri 4411 1  |-  H  ~~>  1
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370   T. wtru 1371    e. wcel 1758    =/= wne 2644   _Vcvv 3068   class class class wbr 4390    |-> cmpt 4448   -->wf 5512   ` cfv 5516  (class class class)co 6190   CCcc 9381   RRcr 9382   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388    <_ cle 9520    - cmin 9696    / cdiv 10094   NNcn 10423   2c2 10472   NN0cn0 10680   ZZcz 10747   ZZ>=cuz 10962   RR+crp 11092   (,)cioo 11401    seqcseq 11907   ^cexp 11966    ~~> cli 13064   sincsin 13451   picpi 13454   S.citg 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cc 8705  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461  ax-addf 9462  ax-mulf 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4361  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-of 6420  df-ofr 6421  df-om 6577  df-1st 6677  df-2nd 6678  df-supp 6791  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-omul 7025  df-er 7201  df-map 7316  df-pm 7317  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-fsupp 7722  df-fi 7762  df-sup 7792  df-oi 7825  df-card 8210  df-acn 8213  df-cda 8438  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-q 11055  df-rp 11093  df-xneg 11190  df-xadd 11191  df-xmul 11192  df-ioo 11405  df-ioc 11406  df-ico 11407  df-icc 11408  df-fz 11539  df-fzo 11650  df-fl 11743  df-mod 11810  df-seq 11908  df-exp 11967  df-fac 12153  df-bc 12180  df-hash 12205  df-shft 12658  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-limsup 13051  df-clim 13068  df-rlim 13069  df-sum 13266  df-ef 13455  df-sin 13457  df-cos 13458  df-pi 13460  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-ress 14283  df-plusg 14353  df-mulr 14354  df-starv 14355  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-unif 14363  df-hom 14364  df-cco 14365  df-rest 14463  df-topn 14464  df-0g 14482  df-gsum 14483  df-topgen 14484  df-pt 14485  df-prds 14488  df-xrs 14542  df-qtop 14547  df-imas 14548  df-xps 14550  df-mre 14626  df-mrc 14627  df-acs 14629  df-mnd 15517  df-submnd 15567  df-mulg 15650  df-cntz 15937  df-cmn 16383  df-psmet 17918  df-xmet 17919  df-met 17920  df-bl 17921  df-mopn 17922  df-fbas 17923  df-fg 17924  df-cnfld 17928  df-top 18619  df-bases 18621  df-topon 18622  df-topsp 18623  df-cld 18739  df-ntr 18740  df-cls 18741  df-nei 18818  df-lp 18856  df-perf 18857  df-cn 18947  df-cnp 18948  df-haus 19035  df-cmp 19106  df-tx 19251  df-hmeo 19444  df-fil 19535  df-fm 19627  df-flim 19628  df-flf 19629  df-xms 20011  df-ms 20012  df-tms 20013  df-cncf 20570  df-ovol 21064  df-vol 21065  df-mbf 21215  df-itg1 21216  df-itg2 21217  df-ibl 21218  df-itg 21219  df-0p 21264  df-limc 21457  df-dv 21458
This theorem is referenced by:  wallispi  30003
  Copyright terms: Public domain W3C validator