Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem1 Structured version   Unicode version

Theorem wallispilem1 37791
Description:  I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispilem1.1  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
wallispilem1.2  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
wallispilem1  |-  ( ph  ->  ( I `  ( N  +  1 ) )  <_  ( I `  N ) )
Distinct variable groups:    x, n, N    ph, x
Allowed substitution hints:    ph( n)    I( x, n)

Proof of Theorem wallispilem1
StepHypRef Expression
1 0re 9645 . . . . 5  |-  0  e.  RR
21a1i 11 . . . 4  |-  ( ph  ->  0  e.  RR )
3 pire 23405 . . . . 5  |-  pi  e.  RR
43a1i 11 . . . 4  |-  ( ph  ->  pi  e.  RR )
5 wallispilem1.2 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 peano2nn0 10912 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
75, 6syl 17 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
8 iblioosinexp 37693 . . . 4  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  ( N  +  1 )  e.  NN0 )  -> 
( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  +  1 ) ) )  e.  L^1 )
92, 4, 7, 8syl3anc 1265 . . 3  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  +  1 ) ) )  e.  L^1 )
10 iblioosinexp 37693 . . . 4  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  N  e.  NN0 )  ->  (
x  e.  ( 0 (,) pi )  |->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
112, 4, 5, 10syl3anc 1265 . . 3  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L^1 )
12 elioore 11668 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  RR )
1312resincld 14190 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  RR )
1413adantl 468 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  RR )
157adantr 467 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  +  1 )  e.  NN0 )
1614, 15reexpcld 12434 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  +  1 ) )  e.  RR )
175adantr 467 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  NN0 )
1814, 17reexpcld 12434 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  e.  RR )
195nn0zd 11040 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
20 uzid 11175 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
2119, 20syl 17 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  N ) )
22 peano2uz 11214 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
2321, 22syl 17 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  N ) )
2423adantr 467 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  N
) )
2513, 1jctil 540 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  (
0  e.  RR  /\  ( sin `  x )  e.  RR ) )
26 sinq12gt0 23454 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  0  <  ( sin `  x
) )
27 ltle 9724 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( sin `  x )  e.  RR )  -> 
( 0  <  ( sin `  x )  -> 
0  <_  ( sin `  x ) ) )
2825, 26, 27sylc 63 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  0  <_  ( sin `  x
) )
2928adantl 468 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  0  <_  ( sin `  x
) )
30 sinbnd 14227 . . . . . . 7  |-  ( x  e.  RR  ->  ( -u 1  <_  ( sin `  x )  /\  ( sin `  x )  <_ 
1 ) )
3112, 30syl 17 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  ( -u 1  <_  ( sin `  x )  /\  ( sin `  x )  <_ 
1 ) )
3231simprd 465 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  <_ 
1 )
3332adantl 468 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  <_ 
1 )
3414, 17, 24, 29, 33leexp2rd 12450 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  +  1 ) )  <_  ( ( sin `  x ) ^ N
) )
359, 11, 16, 18, 34itgle 22759 . 2  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  + 
1 ) )  _d x  <_  S. (
0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
36 oveq2 6311 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ ( N  +  1 ) ) )
3736adantr 467 . . . . 5  |-  ( ( n  =  ( N  +  1 )  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ ( N  + 
1 ) ) )
3837itgeq2dv 22731 . . . 4  |-  ( n  =  ( N  + 
1 )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  + 
1 ) )  _d x )
39 wallispilem1.1 . . . 4  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
40 itgex 22720 . . . 4  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  +  1 ) )  _d x  e.  _V
4138, 39, 40fvmpt 5962 . . 3  |-  ( ( N  +  1 )  e.  NN0  ->  ( I `
 ( N  + 
1 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  + 
1 ) )  _d x )
427, 41syl 17 . 2  |-  ( ph  ->  ( I `  ( N  +  1 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  +  1 ) )  _d x )
43 oveq2 6311 . . . . . 6  |-  ( n  =  N  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
4443adantr 467 . . . . 5  |-  ( ( n  =  N  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ N ) )
4544itgeq2dv 22731 . . . 4  |-  ( n  =  N  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
46 itgex 22720 . . . 4  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x  e.  _V
4745, 39, 46fvmpt 5962 . . 3  |-  ( N  e.  NN0  ->  ( I `
 N )  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
485, 47syl 17 . 2  |-  ( ph  ->  ( I `  N
)  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
4935, 42, 483brtr4d 4452 1  |-  ( ph  ->  ( I `  ( N  +  1 ) )  <_  ( I `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1869   class class class wbr 4421    |-> cmpt 4480   ` cfv 5599  (class class class)co 6303   RRcr 9540   0cc0 9541   1c1 9542    + caddc 9544    < clt 9677    <_ cle 9678   -ucneg 9863   NN0cn0 10871   ZZcz 10939   ZZ>=cuz 11161   (,)cioo 11637   ^cexp 12273   sincsin 14109   picpi 14112   L^1cibl 22567   S.citg 22568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cc 8867  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-disj 4393  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-ofr 6544  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-omul 7193  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-acn 8379  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ioc 11642  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-mod 12098  df-seq 12215  df-exp 12274  df-fac 12461  df-bc 12489  df-hash 12517  df-shft 13124  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ef 14114  df-sin 14116  df-cos 14117  df-pi 14119  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-nei 20106  df-lp 20144  df-perf 20145  df-cn 20235  df-cnp 20236  df-haus 20323  df-cmp 20394  df-tx 20569  df-hmeo 20762  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947  df-xms 21327  df-ms 21328  df-tms 21329  df-cncf 21902  df-ovol 22408  df-vol 22410  df-mbf 22569  df-itg1 22570  df-itg2 22571  df-ibl 22572  df-itg 22573  df-0p 22620  df-limc 22813  df-dv 22814
This theorem is referenced by:  wallispilem5  37795
  Copyright terms: Public domain W3C validator