Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2lem2 Structured version   Visualization version   Unicode version

Theorem wallispi2lem2 37944
Description: Two expressions are proven to be equal, and this is used to complete the proof of the second version of Wallis' formula for π . (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Assertion
Ref Expression
wallispi2lem2  |-  ( N  e.  NN  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  N )  =  ( ( ( 2 ^ ( 4  x.  N
) )  x.  (
( ! `  N
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  N ) ) ^ 2 ) ) )

Proof of Theorem wallispi2lem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5870 . . 3  |-  ( x  =  1  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  x )  =  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 1 ) )
2 oveq2 6303 . . . . . 6  |-  ( x  =  1  ->  (
4  x.  x )  =  ( 4  x.  1 ) )
32oveq2d 6311 . . . . 5  |-  ( x  =  1  ->  (
2 ^ ( 4  x.  x ) )  =  ( 2 ^ ( 4  x.  1 ) ) )
4 fveq2 5870 . . . . . 6  |-  ( x  =  1  ->  ( ! `  x )  =  ( ! ` 
1 ) )
54oveq1d 6310 . . . . 5  |-  ( x  =  1  ->  (
( ! `  x
) ^ 4 )  =  ( ( ! `
 1 ) ^
4 ) )
63, 5oveq12d 6313 . . . 4  |-  ( x  =  1  ->  (
( 2 ^ (
4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  =  ( ( 2 ^ ( 4  x.  1 ) )  x.  ( ( ! ` 
1 ) ^ 4 ) ) )
7 oveq2 6303 . . . . . 6  |-  ( x  =  1  ->  (
2  x.  x )  =  ( 2  x.  1 ) )
87fveq2d 5874 . . . . 5  |-  ( x  =  1  ->  ( ! `  ( 2  x.  x ) )  =  ( ! `  (
2  x.  1 ) ) )
98oveq1d 6310 . . . 4  |-  ( x  =  1  ->  (
( ! `  (
2  x.  x ) ) ^ 2 )  =  ( ( ! `
 ( 2  x.  1 ) ) ^
2 ) )
106, 9oveq12d 6313 . . 3  |-  ( x  =  1  ->  (
( ( 2 ^ ( 4  x.  x
) )  x.  (
( ! `  x
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  x ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 4  x.  1 ) )  x.  ( ( ! `
 1 ) ^
4 ) )  / 
( ( ! `  ( 2  x.  1 ) ) ^ 2 ) ) )
111, 10eqeq12d 2468 . 2  |-  ( x  =  1  ->  (
(  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 x )  =  ( ( ( 2 ^ ( 4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  /  (
( ! `  (
2  x.  x ) ) ^ 2 ) )  <->  (  seq 1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  1
)  =  ( ( ( 2 ^ (
4  x.  1 ) )  x.  ( ( ! `  1 ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  1 ) ) ^
2 ) ) ) )
12 fveq2 5870 . . 3  |-  ( x  =  y  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  x )  =  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y ) )
13 oveq2 6303 . . . . . 6  |-  ( x  =  y  ->  (
4  x.  x )  =  ( 4  x.  y ) )
1413oveq2d 6311 . . . . 5  |-  ( x  =  y  ->  (
2 ^ ( 4  x.  x ) )  =  ( 2 ^ ( 4  x.  y
) ) )
15 fveq2 5870 . . . . . 6  |-  ( x  =  y  ->  ( ! `  x )  =  ( ! `  y ) )
1615oveq1d 6310 . . . . 5  |-  ( x  =  y  ->  (
( ! `  x
) ^ 4 )  =  ( ( ! `
 y ) ^
4 ) )
1714, 16oveq12d 6313 . . . 4  |-  ( x  =  y  ->  (
( 2 ^ (
4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  =  ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) ) )
18 oveq2 6303 . . . . . 6  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
1918fveq2d 5874 . . . . 5  |-  ( x  =  y  ->  ( ! `  ( 2  x.  x ) )  =  ( ! `  (
2  x.  y ) ) )
2019oveq1d 6310 . . . 4  |-  ( x  =  y  ->  (
( ! `  (
2  x.  x ) ) ^ 2 )  =  ( ( ! `
 ( 2  x.  y ) ) ^
2 ) )
2117, 20oveq12d 6313 . . 3  |-  ( x  =  y  ->  (
( ( 2 ^ ( 4  x.  x
) )  x.  (
( ! `  x
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  x ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `
 y ) ^
4 ) )  / 
( ( ! `  ( 2  x.  y
) ) ^ 2 ) ) )
2212, 21eqeq12d 2468 . 2  |-  ( x  =  y  ->  (
(  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 x )  =  ( ( ( 2 ^ ( 4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  /  (
( ! `  (
2  x.  x ) ) ^ 2 ) )  <->  (  seq 1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  y
)  =  ( ( ( 2 ^ (
4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  y ) ) ^
2 ) ) ) )
23 fveq2 5870 . . 3  |-  ( x  =  ( y  +  1 )  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  x )  =  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 ( y  +  1 ) ) )
24 oveq2 6303 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
4  x.  x )  =  ( 4  x.  ( y  +  1 ) ) )
2524oveq2d 6311 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
2 ^ ( 4  x.  x ) )  =  ( 2 ^ ( 4  x.  (
y  +  1 ) ) ) )
26 fveq2 5870 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  ( ! `  x )  =  ( ! `  ( y  +  1 ) ) )
2726oveq1d 6310 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ! `  x
) ^ 4 )  =  ( ( ! `
 ( y  +  1 ) ) ^
4 ) )
2825, 27oveq12d 6313 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( 2 ^ (
4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  =  ( ( 2 ^ ( 4  x.  ( y  +  1 ) ) )  x.  ( ( ! `  ( y  +  1 ) ) ^ 4 ) ) )
29 oveq2 6303 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
2  x.  x )  =  ( 2  x.  ( y  +  1 ) ) )
3029fveq2d 5874 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ! `  ( 2  x.  x ) )  =  ( ! `  (
2  x.  ( y  +  1 ) ) ) )
3130oveq1d 6310 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( ! `  (
2  x.  x ) ) ^ 2 )  =  ( ( ! `
 ( 2  x.  ( y  +  1 ) ) ) ^
2 ) )
3228, 31oveq12d 6313 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( ( 2 ^ ( 4  x.  x
) )  x.  (
( ! `  x
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  x ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 4  x.  ( y  +  1 ) ) )  x.  ( ( ! `
 ( y  +  1 ) ) ^
4 ) )  / 
( ( ! `  ( 2  x.  (
y  +  1 ) ) ) ^ 2 ) ) )
3323, 32eqeq12d 2468 . 2  |-  ( x  =  ( y  +  1 )  ->  (
(  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 x )  =  ( ( ( 2 ^ ( 4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  /  (
( ! `  (
2  x.  x ) ) ^ 2 ) )  <->  (  seq 1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  (
y  +  1 ) )  =  ( ( ( 2 ^ (
4  x.  ( y  +  1 ) ) )  x.  ( ( ! `  ( y  +  1 ) ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  ( y  +  1 ) ) ) ^
2 ) ) ) )
34 fveq2 5870 . . 3  |-  ( x  =  N  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  x )  =  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 N ) )
35 oveq2 6303 . . . . . 6  |-  ( x  =  N  ->  (
4  x.  x )  =  ( 4  x.  N ) )
3635oveq2d 6311 . . . . 5  |-  ( x  =  N  ->  (
2 ^ ( 4  x.  x ) )  =  ( 2 ^ ( 4  x.  N
) ) )
37 fveq2 5870 . . . . . 6  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
3837oveq1d 6310 . . . . 5  |-  ( x  =  N  ->  (
( ! `  x
) ^ 4 )  =  ( ( ! `
 N ) ^
4 ) )
3936, 38oveq12d 6313 . . . 4  |-  ( x  =  N  ->  (
( 2 ^ (
4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  =  ( ( 2 ^ ( 4  x.  N ) )  x.  ( ( ! `  N ) ^ 4 ) ) )
40 oveq2 6303 . . . . . 6  |-  ( x  =  N  ->  (
2  x.  x )  =  ( 2  x.  N ) )
4140fveq2d 5874 . . . . 5  |-  ( x  =  N  ->  ( ! `  ( 2  x.  x ) )  =  ( ! `  (
2  x.  N ) ) )
4241oveq1d 6310 . . . 4  |-  ( x  =  N  ->  (
( ! `  (
2  x.  x ) ) ^ 2 )  =  ( ( ! `
 ( 2  x.  N ) ) ^
2 ) )
4339, 42oveq12d 6313 . . 3  |-  ( x  =  N  ->  (
( ( 2 ^ ( 4  x.  x
) )  x.  (
( ! `  x
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  x ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 4  x.  N ) )  x.  ( ( ! `
 N ) ^
4 ) )  / 
( ( ! `  ( 2  x.  N
) ) ^ 2 ) ) )
4434, 43eqeq12d 2468 . 2  |-  ( x  =  N  ->  (
(  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 x )  =  ( ( ( 2 ^ ( 4  x.  x ) )  x.  ( ( ! `  x ) ^ 4 ) )  /  (
( ! `  (
2  x.  x ) ) ^ 2 ) )  <->  (  seq 1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  N
)  =  ( ( ( 2 ^ (
4  x.  N ) )  x.  ( ( ! `  N ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  N ) ) ^
2 ) ) ) )
45 1z 10974 . . . 4  |-  1  e.  ZZ
46 seq1 12233 . . . 4  |-  ( 1  e.  ZZ  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) ` 
1 )  =  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  1
) )
4745, 46ax-mp 5 . . 3  |-  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) ` 
1 )  =  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  1
)
48 1nn 10627 . . . 4  |-  1  e.  NN
49 oveq2 6303 . . . . . . 7  |-  ( k  =  1  ->  (
2  x.  k )  =  ( 2  x.  1 ) )
5049oveq1d 6310 . . . . . 6  |-  ( k  =  1  ->  (
( 2  x.  k
) ^ 4 )  =  ( ( 2  x.  1 ) ^
4 ) )
5149oveq1d 6310 . . . . . . . 8  |-  ( k  =  1  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  1 )  - 
1 ) )
5249, 51oveq12d 6313 . . . . . . 7  |-  ( k  =  1  ->  (
( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) )  =  ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  -  1 ) ) )
5352oveq1d 6310 . . . . . 6  |-  ( k  =  1  ->  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 )  =  ( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  - 
1 ) ) ^
2 ) )
5450, 53oveq12d 6313 . . . . 5  |-  ( k  =  1  ->  (
( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) )  =  ( ( ( 2  x.  1 ) ^ 4 )  / 
( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  -  1 ) ) ^ 2 ) ) )
55 eqid 2453 . . . . 5  |-  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) )  =  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) )
56 ovex 6323 . . . . 5  |-  ( ( ( 2  x.  1 ) ^ 4 )  /  ( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  - 
1 ) ) ^
2 ) )  e. 
_V
5754, 55, 56fvmpt 5953 . . . 4  |-  ( 1  e.  NN  ->  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  1
)  =  ( ( ( 2  x.  1 ) ^ 4 )  /  ( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  - 
1 ) ) ^
2 ) ) )
5848, 57ax-mp 5 . . 3  |-  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) `  1 )  =  ( ( ( 2  x.  1 ) ^ 4 )  / 
( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  -  1 ) ) ^ 2 ) )
59 2t1e2 10765 . . . . . 6  |-  ( 2  x.  1 )  =  2
6059oveq1i 6305 . . . . 5  |-  ( ( 2  x.  1 ) ^ 4 )  =  ( 2 ^ 4 )
61 2exp4 15069 . . . . . . 7  |-  ( 2 ^ 4 )  = ; 1
6
62 1nn0 10892 . . . . . . . 8  |-  1  e.  NN0
63 6nn0 10897 . . . . . . . 8  |-  6  e.  NN0
64 0nn0 10891 . . . . . . . 8  |-  0  e.  NN0
65 1t1e1 10764 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
6665oveq1i 6305 . . . . . . . . 9  |-  ( ( 1  x.  1 )  +  0 )  =  ( 1  +  0 )
67 1p0e1 10729 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
6866, 67eqtri 2475 . . . . . . . 8  |-  ( ( 1  x.  1 )  +  0 )  =  1
69 6cn 10698 . . . . . . . . . 10  |-  6  e.  CC
7069mulid1i 9650 . . . . . . . . 9  |-  ( 6  x.  1 )  =  6
7163dec0h 11074 . . . . . . . . 9  |-  6  = ; 0 6
7270, 71eqtri 2475 . . . . . . . 8  |-  ( 6  x.  1 )  = ; 0
6
7362, 62, 63, 61, 63, 64, 68, 72decmul1c 11105 . . . . . . 7  |-  ( ( 2 ^ 4 )  x.  1 )  = ; 1
6
7461, 73eqtr4i 2478 . . . . . 6  |-  ( 2 ^ 4 )  =  ( ( 2 ^ 4 )  x.  1 )
75 2nn0 10893 . . . . . . . . 9  |-  2  e.  NN0
76 2t2e4 10766 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
77 sq1 12376 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
7862, 75, 76, 77, 65numexp2x 15063 . . . . . . . 8  |-  ( 1 ^ 4 )  =  1
7978eqcomi 2462 . . . . . . 7  |-  1  =  ( 1 ^ 4 )
8079oveq2i 6306 . . . . . 6  |-  ( ( 2 ^ 4 )  x.  1 )  =  ( ( 2 ^ 4 )  x.  (
1 ^ 4 ) )
81 4cn 10694 . . . . . . . . . 10  |-  4  e.  CC
8281mulid1i 9650 . . . . . . . . 9  |-  ( 4  x.  1 )  =  4
8382eqcomi 2462 . . . . . . . 8  |-  4  =  ( 4  x.  1 )
8483oveq2i 6306 . . . . . . 7  |-  ( 2 ^ 4 )  =  ( 2 ^ (
4  x.  1 ) )
85 fac1 12470 . . . . . . . . 9  |-  ( ! `
 1 )  =  1
8685eqcomi 2462 . . . . . . . 8  |-  1  =  ( ! ` 
1 )
8786oveq1i 6305 . . . . . . 7  |-  ( 1 ^ 4 )  =  ( ( ! ` 
1 ) ^ 4 )
8884, 87oveq12i 6307 . . . . . 6  |-  ( ( 2 ^ 4 )  x.  ( 1 ^ 4 ) )  =  ( ( 2 ^ ( 4  x.  1 ) )  x.  (
( ! `  1
) ^ 4 ) )
8974, 80, 883eqtri 2479 . . . . 5  |-  ( 2 ^ 4 )  =  ( ( 2 ^ ( 4  x.  1 ) )  x.  (
( ! `  1
) ^ 4 ) )
9060, 89eqtri 2475 . . . 4  |-  ( ( 2  x.  1 ) ^ 4 )  =  ( ( 2 ^ ( 4  x.  1 ) )  x.  (
( ! `  1
) ^ 4 ) )
9159oveq1i 6305 . . . . . . . 8  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
92 2m1e1 10731 . . . . . . . 8  |-  ( 2  -  1 )  =  1
9391, 92eqtri 2475 . . . . . . 7  |-  ( ( 2  x.  1 )  -  1 )  =  1
9493oveq2i 6306 . . . . . 6  |-  ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  - 
1 ) )  =  ( ( 2  x.  1 )  x.  1 )
9559oveq1i 6305 . . . . . . 7  |-  ( ( 2  x.  1 )  x.  1 )  =  ( 2  x.  1 )
9695, 59eqtri 2475 . . . . . 6  |-  ( ( 2  x.  1 )  x.  1 )  =  2
9759fveq2i 5873 . . . . . . . 8  |-  ( ! `
 ( 2  x.  1 ) )  =  ( ! `  2
)
98 fac2 12472 . . . . . . . 8  |-  ( ! `
 2 )  =  2
9997, 98eqtri 2475 . . . . . . 7  |-  ( ! `
 ( 2  x.  1 ) )  =  2
10099eqcomi 2462 . . . . . 6  |-  2  =  ( ! `  ( 2  x.  1 ) )
10194, 96, 1003eqtri 2479 . . . . 5  |-  ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  - 
1 ) )  =  ( ! `  (
2  x.  1 ) )
102101oveq1i 6305 . . . 4  |-  ( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  -  1 ) ) ^ 2 )  =  ( ( ! `  ( 2  x.  1 ) ) ^ 2 )
10390, 102oveq12i 6307 . . 3  |-  ( ( ( 2  x.  1 ) ^ 4 )  /  ( ( ( 2  x.  1 )  x.  ( ( 2  x.  1 )  - 
1 ) ) ^
2 ) )  =  ( ( ( 2 ^ ( 4  x.  1 ) )  x.  ( ( ! ` 
1 ) ^ 4 ) )  /  (
( ! `  (
2  x.  1 ) ) ^ 2 ) )
10447, 58, 1033eqtri 2479 . 2  |-  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) ` 
1 )  =  ( ( ( 2 ^ ( 4  x.  1 ) )  x.  (
( ! `  1
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  1 ) ) ^ 2 ) )
105 elnnuz 11202 . . . . . . 7  |-  ( y  e.  NN  <->  y  e.  ( ZZ>= `  1 )
)
106105biimpi 198 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ( ZZ>= `  1 )
)
107106adantr 467 . . . . 5  |-  ( ( y  e.  NN  /\  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) ) )  ->  y  e.  ( ZZ>= `  1 )
)
108 seqp1 12235 . . . . 5  |-  ( y  e.  ( ZZ>= `  1
)  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  ( y  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  y )  x.  ( ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) `
 ( y  +  1 ) ) ) )
109107, 108syl 17 . . . 4  |-  ( ( y  e.  NN  /\  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) ) )  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  ( y  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  y )  x.  ( ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) `
 ( y  +  1 ) ) ) )
110 simpr 463 . . . . 5  |-  ( ( y  e.  NN  /\  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) ) )  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  y )  =  ( ( ( 2 ^ ( 4  x.  y
) )  x.  (
( ! `  y
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  y ) ) ^ 2 ) ) )
111110oveq1d 6310 . . . 4  |-  ( ( y  e.  NN  /\  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) ) )  ->  (
(  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  x.  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) `  ( y  +  1 ) ) )  =  ( ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `
 y ) ^
4 ) )  / 
( ( ! `  ( 2  x.  y
) ) ^ 2 ) )  x.  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  (
y  +  1 ) ) ) )
112 eqidd 2454 . . . . . . . 8  |-  ( y  e.  NN  ->  (
k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) )  =  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) )
113 oveq2 6303 . . . . . . . . . . 11  |-  ( k  =  ( y  +  1 )  ->  (
2  x.  k )  =  ( 2  x.  ( y  +  1 ) ) )
114113oveq1d 6310 . . . . . . . . . 10  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
) ^ 4 )  =  ( ( 2  x.  ( y  +  1 ) ) ^
4 ) )
115113oveq1d 6310 . . . . . . . . . . . 12  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) )
116113, 115oveq12d 6313 . . . . . . . . . . 11  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) )  =  ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) )
117116oveq1d 6310 . . . . . . . . . 10  |-  ( k  =  ( y  +  1 )  ->  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 )  =  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) ^
2 ) )
118114, 117oveq12d 6313 . . . . . . . . 9  |-  ( k  =  ( y  +  1 )  ->  (
( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) )  =  ( ( ( 2  x.  ( y  +  1 ) ) ^ 4 )  / 
( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ^ 2 ) ) )
119118adantl 468 . . . . . . . 8  |-  ( ( y  e.  NN  /\  k  =  ( y  +  1 ) )  ->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) )  =  ( ( ( 2  x.  ( y  +  1 ) ) ^ 4 )  /  ( ( ( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ^ 2 ) ) )
120 peano2nn 10628 . . . . . . . 8  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
121 2cnd 10689 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  2  e.  CC )
122 nncn 10624 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  CC )
123 1cnd 9664 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  1  e.  CC )
124122, 123addcld 9667 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  CC )
125121, 124mulcld 9668 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  e.  CC )
126 4nn0 10895 . . . . . . . . . . 11  |-  4  e.  NN0
127126a1i 11 . . . . . . . . . 10  |-  ( y  e.  NN  ->  4  e.  NN0 )
128125, 127expcld 12423 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) ) ^ 4 )  e.  CC )
129125, 123subcld 9991 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  e.  CC )
130125, 129mulcld 9668 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  e.  CC )
131130sqcld 12421 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  -  1 ) ) ^ 2 )  e.  CC )
132 2pos 10708 . . . . . . . . . . . . . 14  |-  0  <  2
133132a1i 11 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  0  <  2 )
134133gt0ne0d 10185 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  2  =/=  0 )
135120nnne0d 10661 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  +  1 )  =/=  0 )
136121, 124, 134, 135mulne0d 10271 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =/=  0 )
137 1red 9663 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  1  e.  RR )
138 2re 10686 . . . . . . . . . . . . . . 15  |-  2  e.  RR
139138a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  2  e.  RR )
140 nnre 10623 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  RR )
141140, 137readdcld 9675 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  RR )
142 1lt2 10783 . . . . . . . . . . . . . . 15  |-  1  <  2
143142a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  1  <  2 )
144 nnrp 11318 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  RR+ )
145137, 144ltaddrp2d 11379 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  1  <  ( y  +  1 ) )
146139, 141, 143, 145mulgt1d 10550 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  1  <  ( 2  x.  (
y  +  1 ) ) )
147137, 146gtned 9775 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =/=  1 )
148125, 123, 147subne0d 10000 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  =/=  0 )
149125, 129, 136, 148mulne0d 10271 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  =/=  0 )
150 2z 10976 . . . . . . . . . . 11  |-  2  e.  ZZ
151150a1i 11 . . . . . . . . . 10  |-  ( y  e.  NN  ->  2  e.  ZZ )
152130, 149, 151expne0d 12429 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  -  1 ) ) ^ 2 )  =/=  0 )
153128, 131, 152divcld 10390 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) ) ^ 4 )  /  ( ( ( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ^ 2 ) )  e.  CC )
154112, 119, 120, 153fvmptd 5959 . . . . . . 7  |-  ( y  e.  NN  ->  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  (
y  +  1 ) )  =  ( ( ( 2  x.  (
y  +  1 ) ) ^ 4 )  /  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) ^
2 ) ) )
155154oveq2d 6311 . . . . . 6  |-  ( y  e.  NN  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) )  x.  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) `  ( y  +  1 ) ) )  =  ( ( ( ( 2 ^ ( 4  x.  y
) )  x.  (
( ! `  y
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  y ) ) ^ 2 ) )  x.  ( ( ( 2  x.  ( y  +  1 ) ) ^ 4 )  / 
( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ^ 2 ) ) ) )
156 nnnn0 10883 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  NN0 )
157127, 156nn0mulcld 10937 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
4  x.  y )  e.  NN0 )
158121, 157expcld 12423 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
2 ^ ( 4  x.  y ) )  e.  CC )
159 faccl 12476 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( ! `
 y )  e.  NN )
160 nncn 10624 . . . . . . . . . . 11  |-  ( ( ! `  y )  e.  NN  ->  ( ! `  y )  e.  CC )
161156, 159, 1603syl 18 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( ! `  y )  e.  CC )
162161, 127expcld 12423 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ! `  y
) ^ 4 )  e.  CC )
163158, 162mulcld 9668 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( 2 ^ (
4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  e.  CC )
16475a1i 11 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  2  e.  NN0 )
165164, 156nn0mulcld 10937 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN0 )
166 faccl 12476 . . . . . . . . . 10  |-  ( ( 2  x.  y )  e.  NN0  ->  ( ! `
 ( 2  x.  y ) )  e.  NN )
167 nncn 10624 . . . . . . . . . 10  |-  ( ( ! `  ( 2  x.  y ) )  e.  NN  ->  ( ! `  ( 2  x.  y ) )  e.  CC )
168165, 166, 1673syl 18 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( ! `  ( 2  x.  y ) )  e.  CC )
169168sqcld 12421 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ! `  (
2  x.  y ) ) ^ 2 )  e.  CC )
170165, 166syl 17 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( ! `  ( 2  x.  y ) )  e.  NN )
171170nnne0d 10661 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( ! `  ( 2  x.  y ) )  =/=  0 )
172168, 171, 151expne0d 12429 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ! `  (
2  x.  y ) ) ^ 2 )  =/=  0 )
173163, 169, 128, 131, 172, 152divmuldivd 10431 . . . . . . 7  |-  ( y  e.  NN  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) )  x.  ( ( ( 2  x.  (
y  +  1 ) ) ^ 4 )  /  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) ^
2 ) ) )  =  ( ( ( ( 2 ^ (
4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  x.  ( ( 2  x.  ( y  +  1 ) ) ^
4 ) )  / 
( ( ( ! `
 ( 2  x.  y ) ) ^
2 )  x.  (
( ( 2  x.  ( y  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  -  1 ) ) ^ 2 ) ) ) )
174121, 124, 127mulexpd 12438 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) ) ^ 4 )  =  ( ( 2 ^ 4 )  x.  ( ( y  +  1 ) ^ 4 ) ) )
175174oveq2d 6311 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( 2 ^ ( 4  x.  y
) )  x.  (
( ! `  y
) ^ 4 ) )  x.  ( ( 2  x.  ( y  +  1 ) ) ^ 4 ) )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `
 y ) ^
4 ) )  x.  ( ( 2 ^ 4 )  x.  (
( y  +  1 ) ^ 4 ) ) ) )
176121, 127expcld 12423 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
2 ^ 4 )  e.  CC )
177124, 127expcld 12423 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( y  +  1 ) ^ 4 )  e.  CC )
178158, 162, 176, 177mul4d 9850 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( 2 ^ ( 4  x.  y
) )  x.  (
( ! `  y
) ^ 4 ) )  x.  ( ( 2 ^ 4 )  x.  ( ( y  +  1 ) ^
4 ) ) )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( 2 ^ 4 ) )  x.  ( ( ( ! `
 y ) ^
4 )  x.  (
( y  +  1 ) ^ 4 ) ) ) )
179161, 124, 127mulexpd 12438 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( ! `  y )  x.  (
y  +  1 ) ) ^ 4 )  =  ( ( ( ! `  y ) ^ 4 )  x.  ( ( y  +  1 ) ^ 4 ) ) )
180179eqcomd 2459 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( ! `  y ) ^ 4 )  x.  ( ( y  +  1 ) ^ 4 ) )  =  ( ( ( ! `  y )  x.  ( y  +  1 ) ) ^
4 ) )
181180oveq2d 6311 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( 2 ^ ( 4  x.  y
) )  x.  (
2 ^ 4 ) )  x.  ( ( ( ! `  y
) ^ 4 )  x.  ( ( y  +  1 ) ^
4 ) ) )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( 2 ^ 4 ) )  x.  ( ( ( ! `
 y )  x.  ( y  +  1 ) ) ^ 4 ) ) )
182175, 178, 1813eqtrd 2491 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ( 2 ^ ( 4  x.  y
) )  x.  (
( ! `  y
) ^ 4 ) )  x.  ( ( 2  x.  ( y  +  1 ) ) ^ 4 ) )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( 2 ^ 4 ) )  x.  ( ( ( ! `
 y )  x.  ( y  +  1 ) ) ^ 4 ) ) )
183121, 122mulcld 9668 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  CC )
184183, 123addcld 9667 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  1 )  e.  CC )
185125, 184mulcomd 9669 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  y )  +  1 ) )  =  ( ( ( 2  x.  y )  +  1 )  x.  ( 2  x.  (
y  +  1 ) ) ) )
186185oveq2d 6311 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ! `  (
2  x.  y ) )  x.  ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  y )  +  1 ) ) )  =  ( ( ! `
 ( 2  x.  y ) )  x.  ( ( ( 2  x.  y )  +  1 )  x.  (
2  x.  ( y  +  1 ) ) ) ) )
187121, 122, 123adddid 9672 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =  ( ( 2  x.  y )  +  ( 2  x.  1 ) ) )
188187oveq1d 6310 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  =  ( ( ( 2  x.  y )  +  ( 2  x.  1 ) )  - 
1 ) )
18959, 121syl5eqel 2535 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
2  x.  1 )  e.  CC )
190183, 189, 123addsubassd 10011 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  y )  +  ( ( 2  x.  1 )  -  1 ) ) )
19159a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  (
2  x.  1 )  =  2 )
192191oveq1d 6310 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
( 2  x.  1 )  -  1 )  =  ( 2  -  1 ) )
193192, 92syl6eq 2503 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  1 )  -  1 )  =  1 )
194193oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( ( 2  x.  1 )  -  1 ) )  =  ( ( 2  x.  y )  +  1 ) )
195188, 190, 1943eqtrd 2491 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  =  ( ( 2  x.  y )  +  1 ) )
196195oveq2d 6311 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  =  ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  y )  +  1 ) ) )
197196oveq2d 6311 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ! `  (
2  x.  y ) )  x.  ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) )  =  ( ( ! `
 ( 2  x.  y ) )  x.  ( ( 2  x.  ( y  +  1 ) )  x.  (
( 2  x.  y
)  +  1 ) ) ) )
198168, 184, 125mulassd 9671 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( ! `  ( 2  x.  y
) )  x.  (
( 2  x.  y
)  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) )  =  ( ( ! `
 ( 2  x.  y ) )  x.  ( ( ( 2  x.  y )  +  1 )  x.  (
2  x.  ( y  +  1 ) ) ) ) )
199186, 197, 1983eqtr4d 2497 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ! `  (
2  x.  y ) )  x.  ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) )  =  ( ( ( ! `  ( 2  x.  y ) )  x.  ( ( 2  x.  y )  +  1 ) )  x.  ( 2  x.  (
y  +  1 ) ) ) )
200199oveq1d 6310 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( ! `  ( 2  x.  y
) )  x.  (
( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ) ^ 2 )  =  ( ( ( ( ! `  (
2  x.  y ) )  x.  ( ( 2  x.  y )  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) ^
2 ) )
201168, 130, 164mulexpd 12438 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( ! `  ( 2  x.  y
) )  x.  (
( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ) ^ 2 )  =  ( ( ( ! `  ( 2  x.  y ) ) ^ 2 )  x.  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ^ 2 ) ) )
202 df-2 10675 . . . . . . . . . . . . . . 15  |-  2  =  ( 1  +  1 )
203202a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  2  =  ( 1  +  1 ) )
204203oveq2d 6311 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  2 )  =  ( ( 2  x.  y )  +  ( 1  +  1 ) ) )
205183, 123, 123addassd 9670 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  1 )  +  1 )  =  ( ( 2  x.  y )  +  ( 1  +  1 ) ) )
206204, 205eqtr4d 2490 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  2 )  =  ( ( ( 2  x.  y )  +  1 )  +  1 ) )
207206fveq2d 5874 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  ( ! `  ( (
2  x.  y )  +  2 ) )  =  ( ! `  ( ( ( 2  x.  y )  +  1 )  +  1 ) ) )
20862a1i 11 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  1  e.  NN0 )
209165, 208nn0addcld 10936 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  1 )  e.  NN0 )
210 facp1 12471 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  +  1 )  e.  NN0  ->  ( ! `
 ( ( ( 2  x.  y )  +  1 )  +  1 ) )  =  ( ( ! `  ( ( 2  x.  y )  +  1 ) )  x.  (
( ( 2  x.  y )  +  1 )  +  1 ) ) )
211209, 210syl 17 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  ( ! `  ( (
( 2  x.  y
)  +  1 )  +  1 ) )  =  ( ( ! `
 ( ( 2  x.  y )  +  1 ) )  x.  ( ( ( 2  x.  y )  +  1 )  +  1 ) ) )
212 facp1 12471 . . . . . . . . . . . . 13  |-  ( ( 2  x.  y )  e.  NN0  ->  ( ! `
 ( ( 2  x.  y )  +  1 ) )  =  ( ( ! `  ( 2  x.  y
) )  x.  (
( 2  x.  y
)  +  1 ) ) )
213165, 212syl 17 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  ( ! `  ( (
2  x.  y )  +  1 ) )  =  ( ( ! `
 ( 2  x.  y ) )  x.  ( ( 2  x.  y )  +  1 ) ) )
214203eqcomd 2459 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
1  +  1 )  =  2 )
215214oveq2d 6311 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( 1  +  1 ) )  =  ( ( 2  x.  y )  +  2 ) )
216214, 202, 593eqtr4g 2512 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  2  =  ( 2  x.  1 ) )
217216oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  2 )  =  ( ( 2  x.  y )  +  ( 2  x.  1 ) ) )
218217, 187eqtr4d 2490 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  2 )  =  ( 2  x.  ( y  +  1 ) ) )
219205, 215, 2183eqtrd 2491 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  1 )  +  1 )  =  ( 2  x.  ( y  +  1 ) ) )
220213, 219oveq12d 6313 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ! `  (
( 2  x.  y
)  +  1 ) )  x.  ( ( ( 2  x.  y
)  +  1 )  +  1 ) )  =  ( ( ( ! `  ( 2  x.  y ) )  x.  ( ( 2  x.  y )  +  1 ) )  x.  ( 2  x.  (
y  +  1 ) ) ) )
221207, 211, 2203eqtrrd 2492 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( ! `  ( 2  x.  y
) )  x.  (
( 2  x.  y
)  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) )  =  ( ! `  ( ( 2  x.  y )  +  2 ) ) )
222221oveq1d 6310 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( ( ! `
 ( 2  x.  y ) )  x.  ( ( 2  x.  y )  +  1 ) )  x.  (
2  x.  ( y  +  1 ) ) ) ^ 2 )  =  ( ( ! `
 ( ( 2  x.  y )  +  2 ) ) ^
2 ) )
223200, 201, 2223eqtr3d 2495 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ( ! `  ( 2  x.  y
) ) ^ 2 )  x.  ( ( ( 2  x.  (
y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  -  1 ) ) ^ 2 ) )  =  ( ( ! `
 ( ( 2  x.  y )  +  2 ) ) ^
2 ) )
224182, 223oveq12d 6313 . . . . . . 7  |-  ( y  e.  NN  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  x.  (
( 2  x.  (
y  +  1 ) ) ^ 4 ) )  /  ( ( ( ! `  (
2  x.  y ) ) ^ 2 )  x.  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) ^
2 ) ) )  =  ( ( ( ( 2 ^ (
4  x.  y ) )  x.  ( 2 ^ 4 ) )  x.  ( ( ( ! `  y )  x.  ( y  +  1 ) ) ^
4 ) )  / 
( ( ! `  ( ( 2  x.  y )  +  2 ) ) ^ 2 ) ) )
225173, 224eqtrd 2487 . . . . . 6  |-  ( y  e.  NN  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) )  x.  ( ( ( 2  x.  (
y  +  1 ) ) ^ 4 )  /  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) ) ^
2 ) ) )  =  ( ( ( ( 2 ^ (
4  x.  y ) )  x.  ( 2 ^ 4 ) )  x.  ( ( ( ! `  y )  x.  ( y  +  1 ) ) ^
4 ) )  / 
( ( ! `  ( ( 2  x.  y )  +  2 ) ) ^ 2 ) ) )
22683a1i 11 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  4  =  ( 4  x.  1 ) )
227226oveq2d 6311 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( 4  x.  y
)  +  4 )  =  ( ( 4  x.  y )  +  ( 4  x.  1 ) ) )
228227oveq2d 6311 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
2 ^ ( ( 4  x.  y )  +  4 ) )  =  ( 2 ^ ( ( 4  x.  y )  +  ( 4  x.  1 ) ) ) )
229121, 127, 157expaddd 12425 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
2 ^ ( ( 4  x.  y )  +  4 ) )  =  ( ( 2 ^ ( 4  x.  y ) )  x.  ( 2 ^ 4 ) ) )
23081a1i 11 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  4  e.  CC )
231230, 122, 123adddid 9672 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
4  x.  ( y  +  1 ) )  =  ( ( 4  x.  y )  +  ( 4  x.  1 ) ) )
232231eqcomd 2459 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( 4  x.  y
)  +  ( 4  x.  1 ) )  =  ( 4  x.  ( y  +  1 ) ) )
233232oveq2d 6311 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
2 ^ ( ( 4  x.  y )  +  ( 4  x.  1 ) ) )  =  ( 2 ^ ( 4  x.  (
y  +  1 ) ) ) )
234228, 229, 2333eqtr3d 2495 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( 2 ^ (
4  x.  y ) )  x.  ( 2 ^ 4 ) )  =  ( 2 ^ ( 4  x.  (
y  +  1 ) ) ) )
235 facp1 12471 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( ! `
 ( y  +  1 ) )  =  ( ( ! `  y )  x.  (
y  +  1 ) ) )
236156, 235syl 17 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( ! `  ( y  +  1 ) )  =  ( ( ! `
 y )  x.  ( y  +  1 ) ) )
237236eqcomd 2459 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ! `  y
)  x.  ( y  +  1 ) )  =  ( ! `  ( y  +  1 ) ) )
238237oveq1d 6310 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ( ! `  y )  x.  (
y  +  1 ) ) ^ 4 )  =  ( ( ! `
 ( y  +  1 ) ) ^
4 ) )
239234, 238oveq12d 6313 . . . . . . 7  |-  ( y  e.  NN  ->  (
( ( 2 ^ ( 4  x.  y
) )  x.  (
2 ^ 4 ) )  x.  ( ( ( ! `  y
)  x.  ( y  +  1 ) ) ^ 4 ) )  =  ( ( 2 ^ ( 4  x.  ( y  +  1 ) ) )  x.  ( ( ! `  ( y  +  1 ) ) ^ 4 ) ) )
240218fveq2d 5874 . . . . . . . 8  |-  ( y  e.  NN  ->  ( ! `  ( (
2  x.  y )  +  2 ) )  =  ( ! `  ( 2  x.  (
y  +  1 ) ) ) )
241240oveq1d 6310 . . . . . . 7  |-  ( y  e.  NN  ->  (
( ! `  (
( 2  x.  y
)  +  2 ) ) ^ 2 )  =  ( ( ! `
 ( 2  x.  ( y  +  1 ) ) ) ^
2 ) )
242239, 241oveq12d 6313 . . . . . 6  |-  ( y  e.  NN  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( 2 ^ 4 ) )  x.  (
( ( ! `  y )  x.  (
y  +  1 ) ) ^ 4 ) )  /  ( ( ! `  ( ( 2  x.  y )  +  2 ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 4  x.  ( y  +  1 ) ) )  x.  ( ( ! `
 ( y  +  1 ) ) ^
4 ) )  / 
( ( ! `  ( 2  x.  (
y  +  1 ) ) ) ^ 2 ) ) )
243155, 225, 2423eqtrd 2491 . . . . 5  |-  ( y  e.  NN  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) )  x.  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) `  ( y  +  1 ) ) )  =  ( ( ( 2 ^ (
4  x.  ( y  +  1 ) ) )  x.  ( ( ! `  ( y  +  1 ) ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  ( y  +  1 ) ) ) ^
2 ) ) )
244243adantr 467 . . . 4  |-  ( ( y  e.  NN  /\  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) ) )  ->  (
( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) )  x.  ( ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) `  ( y  +  1 ) ) )  =  ( ( ( 2 ^ (
4  x.  ( y  +  1 ) ) )  x.  ( ( ! `  ( y  +  1 ) ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  ( y  +  1 ) ) ) ^
2 ) ) )
245109, 111, 2443eqtrd 2491 . . 3  |-  ( ( y  e.  NN  /\  (  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) ) )  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  ( y  +  1 ) )  =  ( ( ( 2 ^ ( 4  x.  (
y  +  1 ) ) )  x.  (
( ! `  (
y  +  1 ) ) ^ 4 ) )  /  ( ( ! `  ( 2  x.  ( y  +  1 ) ) ) ^ 2 ) ) )
246245ex 436 . 2  |-  ( y  e.  NN  ->  (
(  seq 1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 y )  =  ( ( ( 2 ^ ( 4  x.  y ) )  x.  ( ( ! `  y ) ^ 4 ) )  /  (
( ! `  (
2  x.  y ) ) ^ 2 ) )  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  ( y  +  1 ) )  =  ( ( ( 2 ^ ( 4  x.  (
y  +  1 ) ) )  x.  (
( ! `  (
y  +  1 ) ) ^ 4 ) )  /  ( ( ! `  ( 2  x.  ( y  +  1 ) ) ) ^ 2 ) ) ) )
24711, 22, 33, 44, 104, 246nnind 10634 1  |-  ( N  e.  NN  ->  (  seq 1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  N )  =  ( ( ( 2 ^ ( 4  x.  N
) )  x.  (
( ! `  N
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  N ) ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   class class class wbr 4405    |-> cmpt 4464   ` cfv 5585  (class class class)co 6295   CCcc 9542   RRcr 9543   0cc0 9544   1c1 9545    + caddc 9547    x. cmul 9549    < clt 9680    - cmin 9865    / cdiv 10276   NNcn 10616   2c2 10666   4c4 10668   6c6 10670   NN0cn0 10876   ZZcz 10944  ;cdc 11058   ZZ>=cuz 11166    seqcseq 12220   ^cexp 12279   !cfa 12466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-rp 11310  df-seq 12221  df-exp 12280  df-fac 12467
This theorem is referenced by:  wallispi2  37945
  Copyright terms: Public domain W3C validator