Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Unicode version

Theorem wallispi 29790
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
wallispi.2  |-  W  =  ( n  e.  NN  |->  (  seq 1 (  x.  ,  F ) `  n ) )
Assertion
Ref Expression
wallispi  |-  W  ~~>  ( pi 
/  2 )
Distinct variable groups:    k, n    n, F
Allowed substitution hints:    F( k)    W( k, n)

Proof of Theorem wallispi
Dummy variables  j  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10892 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10672 . . . . 5  |-  1  e.  ZZ
32a1i 11 . . . 4  |-  ( T. 
->  1  e.  ZZ )
4 wallispi.1 . . . . . . . 8  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
5 eqid 2441 . . . . . . . 8  |-  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x )  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
6 eqid 2441 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x ) `
 ( 2  x.  n ) )  / 
( ( n  e. 
NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) `  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( ( ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) `  ( 2  x.  n
) )  /  (
( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x ) `
 ( ( 2  x.  n )  +  1 ) ) ) )
7 eqid 2441 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) )  =  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) )
8 eqid 2441 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( ( 2  x.  n
)  +  1 )  /  ( 2  x.  n ) ) )  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  n
) ) )
94, 5, 6, 7, 8wallispilem5 29789 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) )  ~~>  1
109a1i 11 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )  ~~>  1 )
11 2cnd 10390 . . . . . . 7  |-  ( T. 
->  2  e.  CC )
12 pire 21880 . . . . . . . . 9  |-  pi  e.  RR
1312recni 9394 . . . . . . . 8  |-  pi  e.  CC
1413a1i 11 . . . . . . 7  |-  ( T. 
->  pi  e.  CC )
15 pipos 21882 . . . . . . . . 9  |-  0  <  pi
1612, 15gt0ne0ii 9872 . . . . . . . 8  |-  pi  =/=  0
1716a1i 11 . . . . . . 7  |-  ( T. 
->  pi  =/=  0 )
1811, 14, 17divcld 10103 . . . . . 6  |-  ( T. 
->  ( 2  /  pi )  e.  CC )
19 nnex 10324 . . . . . . . 8  |-  NN  e.  _V
2019mptex 5945 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) )  e.  _V
2120a1i 11 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) )  e. 
_V )
2213a1i 11 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  pi  e.  CC )
2322halfcld 10565 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
pi  /  2 )  e.  CC )
24 elnnuz 10893 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
2524biimpi 194 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
264a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) ) )
27 oveq2 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
2827oveq1d 6105 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  j )  - 
1 ) )
2927, 28oveq12d 6108 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  =  ( ( 2  x.  j )  / 
( ( 2  x.  j )  -  1 ) ) )
3027oveq1d 6105 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
3127, 30oveq12d 6108 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  j )  / 
( ( 2  x.  j )  +  1 ) ) )
3229, 31oveq12d 6108 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  (
( ( 2  x.  k )  /  (
( 2  x.  k
)  -  1 ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  j )  /  ( ( 2  x.  j )  - 
1 ) )  x.  ( ( 2  x.  j )  /  (
( 2  x.  j
)  +  1 ) ) ) )
3332adantl 463 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 1 ... n )  /\  k  =  j )  ->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  j
)  /  ( ( 2  x.  j )  -  1 ) )  x.  ( ( 2  x.  j )  / 
( ( 2  x.  j )  +  1 ) ) ) )
34 elfznn 11474 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  j  e.  NN )
35 2cnd 10390 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  2  e.  CC )
36 nncn 10326 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  j  e.  CC )
3735, 36mulcld 9402 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  CC )
38 ax-1cn 9336 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
3938a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  1  e.  CC )
4037, 39subcld 9715 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  e.  CC )
41 1re 9381 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
4241a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  1  e.  RR )
43 1t1e1 10465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  x.  1 )  =  1
4442, 42remulcld 9410 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
1  x.  1 )  e.  RR )
45 2re 10387 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  2  e.  RR
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  2  e.  RR )
4746, 42remulcld 9410 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
2  x.  1 )  e.  RR )
48 nnre 10325 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  j  e.  RR )
4946, 48remulcld 9410 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  RR )
50 1rp 10991 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  e.  RR+
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  1  e.  RR+ )
52 1lt2 10484 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  <  2
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  1  <  2 )
5442, 46, 51, 53ltmul1dd 11074 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
1  x.  1 )  <  ( 2  x.  1 ) )
55 0le2 10408 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  <_  2
5655a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  0  <_  2 )
57 nnge1 10344 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  1  <_  j )
5842, 48, 46, 56, 57lemul2ad 10269 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
2  x.  1 )  <_  ( 2  x.  j ) )
5944, 47, 49, 54, 58ltletrd 9527 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  NN  ->  (
1  x.  1 )  <  ( 2  x.  j ) )
6043, 59syl5eqbrr 4323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  1  <  ( 2  x.  j
) )
6142, 60gtned 9505 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  (
2  x.  j )  =/=  1 )
6237, 39, 61subne0d 9724 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  =/=  0 )
6337, 40, 62divcld 10103 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  -  1 ) )  e.  CC )
6437, 39addcld 9401 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  e.  CC )
65 0re 9382 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  RR
6665a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  0  e.  RR )
6749, 42readdcld 9409 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  e.  RR )
6851rpgt0d 11026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  0  <  1 )
69 2rp 10992 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  RR+
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  2  e.  RR+ )
71 nnrp 10996 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  j  e.  RR+ )
7270, 71rpmulcld 11039 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  RR+ )
7342, 72ltaddrp2d 11053 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  1  <  ( ( 2  x.  j )  +  1 ) )
7466, 42, 67, 68, 73lttrd 9528 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  0  <  ( ( 2  x.  j )  +  1 ) )
7566, 74gtned 9505 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  =/=  0 )
7637, 64, 75divcld 10103 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  +  1 ) )  e.  CC )
7763, 76mulcld 9402 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  (
( ( 2  x.  j )  /  (
( 2  x.  j
)  -  1 ) )  x.  ( ( 2  x.  j )  /  ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
7834, 77syl 16 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  (
( ( 2  x.  j )  /  (
( 2  x.  j
)  -  1 ) )  x.  ( ( 2  x.  j )  /  ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
7926, 33, 34, 78fvmptd 5776 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... n )  ->  ( F `  j )  =  ( ( ( 2  x.  j )  /  ( ( 2  x.  j )  - 
1 ) )  x.  ( ( 2  x.  j )  /  (
( 2  x.  j
)  +  1 ) ) ) )
8069a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  2  e.  RR+ )
8134nnrpd 11022 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  j  e.  RR+ )
8280, 81rpmulcld 11039 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1 ... n )  ->  (
2  x.  j )  e.  RR+ )
8349, 42resubcld 9772 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  e.  RR )
84 1m1e0 10386 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  -  1 )  =  0
8542, 49, 42, 60ltsub1dd 9947 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  (
1  -  1 )  <  ( ( 2  x.  j )  - 
1 ) )
8684, 85syl5eqbrr 4323 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  0  <  ( ( 2  x.  j )  -  1 ) )
8783, 86elrpd 11021 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  e.  RR+ )
8834, 87syl 16 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  -  1 )  e.  RR+ )
8982, 88rpdivcld 11040 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  -  1 ) )  e.  RR+ )
9045a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  2  e.  RR )
9134nnred 10333 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  j  e.  RR )
9290, 91remulcld 9410 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  (
2  x.  j )  e.  RR )
9380rpge0d 11027 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  0  <_  2 )
9481rpge0d 11027 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  0  <_  j )
9590, 91, 93, 94mulge0d 9912 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  0  <_  ( 2  x.  j
) )
9692, 95ge0p1rpd 11049 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  +  1 )  e.  RR+ )
9782, 96rpdivcld 11040 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  +  1 ) )  e.  RR+ )
9889, 97rpmulcld 11039 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... n )  ->  (
( ( 2  x.  j )  /  (
( 2  x.  j
)  -  1 ) )  x.  ( ( 2  x.  j )  /  ( ( 2  x.  j )  +  1 ) ) )  e.  RR+ )
9979, 98eqeltrd 2515 . . . . . . . . . . . . . 14  |-  ( j  e.  ( 1 ... n )  ->  ( F `  j )  e.  RR+ )
10099adantl 463 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  j  e.  ( 1 ... n ) )  ->  ( F `  j )  e.  RR+ )
101 rpmulcl 11008 . . . . . . . . . . . . . 14  |-  ( ( j  e.  RR+  /\  w  e.  RR+ )  ->  (
j  x.  w )  e.  RR+ )
102101adantl 463 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( j  e.  RR+  /\  w  e.  RR+ )
)  ->  ( j  x.  w )  e.  RR+ )
10325, 100, 102seqcl 11822 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  n
)  e.  RR+ )
104103rpcnd 11025 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  n
)  e.  CC )
105103rpne0d 11028 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  n
)  =/=  0 )
106104, 105reccld 10096 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) )  e.  CC )
10723, 106mulcld 9402 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) )  e.  CC )
1087, 107fmpti 5863 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) ) : NN --> CC
109108a1i 11 . . . . . . 7  |-  ( T. 
->  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) ) : NN --> CC )
110109ffvelrnda 5840 . . . . . 6  |-  ( ( T.  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) ) `
 j )  e.  CC )
111 fveq2 5688 . . . . . . . . . . . . 13  |-  ( n  =  j  ->  (  seq 1 (  x.  ,  F ) `  n
)  =  (  seq 1 (  x.  ,  F ) `  j
) )
112111eleq1d 2507 . . . . . . . . . . . 12  |-  ( n  =  j  ->  (
(  seq 1 (  x.  ,  F ) `  n )  e.  RR+  <->  (  seq 1 (  x.  ,  F ) `  j
)  e.  RR+ )
)
113112, 103vtoclga 3033 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  j
)  e.  RR+ )
114113rpcnd 11025 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  j
)  e.  CC )
115113rpne0d 11028 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  j
)  =/=  0 )
11639, 114, 115divrecd 10106 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) )  =  ( 1  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) ) )
11713a1i 11 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  pi  e.  CC )
11870rpne0d 11028 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  2  =/=  0 )
11916a1i 11 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  pi  =/=  0 )
12035, 117, 118, 119divcan6d 10122 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  (
( 2  /  pi )  x.  ( pi  /  2 ) )  =  1 )
121120eqcomd 2446 . . . . . . . . . 10  |-  ( j  e.  NN  ->  1  =  ( ( 2  /  pi )  x.  ( pi  /  2
) ) )
122121oveq1d 6105 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
1  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) )  =  ( ( ( 2  /  pi )  x.  (
pi  /  2 ) )  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) ) )
12335, 117, 119divcld 10103 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
2  /  pi )  e.  CC )
124117halfcld 10565 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
pi  /  2 )  e.  CC )
125114, 115reccld 10096 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) )  e.  CC )
126123, 124, 125mulassd 9405 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
( ( 2  /  pi )  x.  (
pi  /  2 ) )  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) )  =  ( ( 2  /  pi )  x.  ( (
pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  j ) ) ) ) )
127116, 122, 1263eqtrd 2477 . . . . . . . 8  |-  ( j  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) )  =  ( ( 2  /  pi )  x.  ( (
pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  j ) ) ) ) )
128 eqidd 2442 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) )  =  ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
129111oveq2d 6106 . . . . . . . . . 10  |-  ( n  =  j  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  j
) ) )
130129adantl 463 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  j
) ) )
131 id 22 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  NN )
132113rpreccld 11033 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) )  e.  RR+ )
133128, 130, 131, 132fvmptd 5776 . . . . . . . 8  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  j
) ) )
134 eqidd 2442 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) ) )  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) ) )
135130oveq2d 6106 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) )  =  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) ) ) )
136124, 125mulcld 9402 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) )  e.  CC )
137134, 135, 131, 136fvmptd 5776 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) ) `
 j )  =  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) ) ) )
138137oveq2d 6106 . . . . . . . 8  |-  ( j  e.  NN  ->  (
( 2  /  pi )  x.  ( (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) ) ) `  j ) )  =  ( ( 2  /  pi )  x.  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) ) ) )
139127, 133, 1383eqtr4d 2483 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( ( 2  /  pi )  x.  ( (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) ) ) `  j ) ) )
140139adantl 463 . . . . . 6  |-  ( ( T.  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( ( 2  /  pi )  x.  ( (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) ) ) `  j ) ) )
1411, 3, 10, 18, 21, 110, 140climmulc2 13110 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) )  ~~>  ( ( 2  /  pi )  x.  1 ) )
142 2cn 10388 . . . . . . 7  |-  2  e.  CC
143142, 13, 16divcli 10069 . . . . . 6  |-  ( 2  /  pi )  e.  CC
144143mulid1i 9384 . . . . 5  |-  ( ( 2  /  pi )  x.  1 )  =  ( 2  /  pi )
145141, 144syl6breq 4328 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) )  ~~>  ( 2  /  pi ) )
146 2ne0 10410 . . . . . 6  |-  2  =/=  0
147142, 13, 146, 16divne0i 10075 . . . . 5  |-  ( 2  /  pi )  =/=  0
148147a1i 11 . . . 4  |-  ( T. 
->  ( 2  /  pi )  =/=  0 )
149133, 125eqeltrd 2515 . . . . . 6  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  CC )
150114, 115recne0d 10097 . . . . . . . 8  |-  ( j  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) )  =/=  0
)
151133, 150eqnetrd 2624 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =/=  0
)
152 elsni 3899 . . . . . . . 8  |-  ( ( ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  {
0 }  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =  0 )
153152necon3ai 2649 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =/=  0  ->  -.  ( ( n  e.  NN  |->  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) ) `  j
)  e.  { 0 } )
154151, 153syl 16 . . . . . 6  |-  ( j  e.  NN  ->  -.  ( ( n  e.  NN  |->  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) `
 j )  e. 
{ 0 } )
155149, 154eldifd 3336 . . . . 5  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  ( CC  \  { 0 } ) )
156155adantl 463 . . . 4  |-  ( ( T.  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  ( CC  \  { 0 } ) )
157114, 115recrecd 10100 . . . . . 6  |-  ( j  e.  NN  ->  (
1  /  ( 1  /  (  seq 1
(  x.  ,  F
) `  j )
) )  =  (  seq 1 (  x.  ,  F ) `  j ) )
158128, 130, 131, 125fvmptd 5776 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  j
) ) )
159158oveq2d 6106 . . . . . 6  |-  ( j  e.  NN  ->  (
1  /  ( ( n  e.  NN  |->  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) `  j ) )  =  ( 1  /  (
1  /  (  seq 1 (  x.  ,  F ) `  j
) ) ) )
160 wallispi.2 . . . . . . 7  |-  W  =  ( n  e.  NN  |->  (  seq 1 (  x.  ,  F ) `  n ) )
161111, 160, 103fvmpt3 5774 . . . . . 6  |-  ( j  e.  NN  ->  ( W `  j )  =  (  seq 1
(  x.  ,  F
) `  j )
)
162157, 159, 1613eqtr4rd 2484 . . . . 5  |-  ( j  e.  NN  ->  ( W `  j )  =  ( 1  / 
( ( n  e.  NN  |->  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) `
 j ) ) )
163162adantl 463 . . . 4  |-  ( ( T.  /\  j  e.  NN )  ->  ( W `  j )  =  ( 1  / 
( ( n  e.  NN  |->  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) `
 j ) ) )
16419mptex 5945 . . . . . 6  |-  ( n  e.  NN  |->  (  seq 1 (  x.  ,  F ) `  n
) )  e.  _V
165160, 164eqeltri 2511 . . . . 5  |-  W  e. 
_V
166165a1i 11 . . . 4  |-  ( T. 
->  W  e.  _V )
1671, 3, 145, 148, 156, 163, 166climrec 29701 . . 3  |-  ( T. 
->  W  ~~>  ( 1  /  ( 2  /  pi ) ) )
168167trud 1373 . 2  |-  W  ~~>  ( 1  /  ( 2  /  pi ) )
169 recdiv 10033 . . 3  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( pi  e.  CC  /\  pi  =/=  0
) )  ->  (
1  /  ( 2  /  pi ) )  =  ( pi  / 
2 ) )
170142, 146, 13, 16, 169mp4an 668 . 2  |-  ( 1  /  ( 2  /  pi ) )  =  ( pi  /  2 )
171168, 170breqtri 4312 1  |-  W  ~~>  ( pi 
/  2 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1364   T. wtru 1365    e. wcel 1761    =/= wne 2604   _Vcvv 2970    \ cdif 3322   {csn 3874   class class class wbr 4289    e. cmpt 4347   -->wf 5411   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   RR+crp 10987   (,)cioo 11296   ...cfz 11433    seqcseq 11802   ^cexp 11861    ~~> cli 12958   sincsin 13345   picpi 13348   S.citg 21057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cc 8600  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-cmp 18949  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-ovol 20907  df-vol 20908  df-mbf 21058  df-itg1 21059  df-itg2 21060  df-ibl 21061  df-itg 21062  df-0p 21107  df-limc 21300  df-dv 21301
This theorem is referenced by:  wallispi2  29793
  Copyright terms: Public domain W3C validator