![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vtxdg0v | Structured version Visualization version Unicode version |
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
vtxdgf.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtxdg0v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgf.v |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2541 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | fveq2 5879 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | vtxval0 39292 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl6eq 2521 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | eleq2d 2534 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | syl5bb 265 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | noel 3726 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
9 | 8 | pm2.21i 136 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 7, 9 | syl6bi 236 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | imp 436 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-8 1906 ax-9 1913 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 ax-ext 2451 ax-sep 4518 ax-nul 4527 ax-pow 4579 ax-pr 4639 |
This theorem depends on definitions: df-bi 190 df-or 377 df-an 378 df-3an 1009 df-tru 1455 df-ex 1672 df-nf 1676 df-sb 1806 df-eu 2323 df-mo 2324 df-clab 2458 df-cleq 2464 df-clel 2467 df-nfc 2601 df-ne 2643 df-ral 2761 df-rex 2762 df-rab 2765 df-v 3033 df-sbc 3256 df-dif 3393 df-un 3395 df-in 3397 df-ss 3404 df-nul 3723 df-if 3873 df-sn 3960 df-pr 3962 df-op 3966 df-uni 4191 df-br 4396 df-opab 4455 df-mpt 4456 df-id 4754 df-xp 4845 df-rel 4846 df-cnv 4847 df-co 4848 df-dm 4849 df-iota 5553 df-fun 5591 df-fv 5597 df-slot 15203 df-base 15204 df-vtx 39253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |