Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclri Structured version   Unicode version

Theorem vtoclri 3184
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1
vtoclri.2
Assertion
Ref Expression
vtoclri
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2
2 vtoclri.2 . . 3
32rspec 2825 . 2
41, 3vtoclga 3173 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wceq 1395   wcel 1819  wral 2807 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111 This theorem is referenced by:  alephreg  8974  arch  10813  harmonicbnd  23459  harmonicbnd2  23460  ghomgrpilem1  29222  heiborlem8  30498  fourierdlem62  32133  srhmsubclem1  33004  srhmsubc  33007  srhmsubcOLDlem1  33023  srhmsubcOLD  33026
 Copyright terms: Public domain W3C validator