MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgaf Structured version   Unicode version

Theorem vtoclgaf 3141
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgaf.1  |-  F/_ x A
vtoclgaf.2  |-  F/ x ps
vtoclgaf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclgaf.4  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
vtoclgaf  |-  ( A  e.  B  ->  ps )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    ps( x)    A( x)

Proof of Theorem vtoclgaf
StepHypRef Expression
1 vtoclgaf.1 . . 3  |-  F/_ x A
21nfel1 2632 . . . 4  |-  F/ x  A  e.  B
3 vtoclgaf.2 . . . 4  |-  F/ x ps
42, 3nfim 1858 . . 3  |-  F/ x
( A  e.  B  ->  ps )
5 eleq1 2526 . . . 4  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 vtoclgaf.3 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6imbi12d 320 . . 3  |-  ( x  =  A  ->  (
( x  e.  B  ->  ph )  <->  ( A  e.  B  ->  ps )
) )
8 vtoclgaf.4 . . 3  |-  ( x  e.  B  ->  ph )
91, 4, 7, 8vtoclgf 3134 . 2  |-  ( A  e.  B  ->  ( A  e.  B  ->  ps ) )
109pm2.43i 47 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370   F/wnf 1590    e. wcel 1758   F/_wnfc 2602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3080
This theorem is referenced by:  vtoclga  3142  ssiun2s  4323  fvmptss  5892  fvmptf  5900  fmptco  5986  tfis  6576  inar1  9054  sumss  13320  prmind2  13893  lss1d  17168  itg2splitlem  21360  dgrle  21845  cnlnadjlem5  25628  fprodn0  27635  stoweidlem26  29970
  Copyright terms: Public domain W3C validator