Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclf Structured version   Unicode version

Theorem vtoclf 3160
 Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar 2014. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtoclf.1
vtoclf.2
vtoclf.3
vtoclf.4
Assertion
Ref Expression
vtoclf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem vtoclf
StepHypRef Expression
1 vtoclf.1 . . 3
2 vtoclf.2 . . . . 5
32isseti 3115 . . . 4
4 vtoclf.3 . . . . 5
54biimpd 207 . . . 4
63, 5eximii 1659 . . 3
71, 619.36i 1966 . 2
8 vtoclf.4 . 2
97, 8mpg 1621 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wceq 1395  wnf 1617   wcel 1819  cvv 3109 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-12 1855  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111 This theorem is referenced by:  vtocl  3161  summolem2a  13549  prodmolem2a  13753  monotuz  31081  oddcomabszz  31084  binomcxplemnotnn0  31465  limclner  31860  dvnmptdivc  31938  dvnmul  31943
 Copyright terms: Public domain W3C validator