Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Structured version   Visualization version   Unicode version

Theorem vtoclef 3122
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1
vtoclef.2
vtoclef.3
Assertion
Ref Expression
vtoclef
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3
21isseti 3051 . 2
3 vtoclef.1 . . 3
4 vtoclef.3 . . 3
53, 4exlimi 1995 . 2
62, 5ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1444  wex 1663  wnf 1667   wcel 1887  cvv 3045 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-12 1933  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-v 3047 This theorem is referenced by:  nn0ind-raph  11035  finxpreclem2  31782
 Copyright terms: Public domain W3C validator