MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Structured version   Unicode version

Theorem vtoclef 3160
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1  |-  F/ x ph
vtoclef.2  |-  A  e. 
_V
vtoclef.3  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtoclef  |-  ph
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3  |-  A  e. 
_V
21isseti 3093 . 2  |-  E. x  x  =  A
3 vtoclef.1 . . 3  |-  F/ x ph
4 vtoclef.3 . . 3  |-  ( x  =  A  ->  ph )
53, 4exlimi 1970 . 2  |-  ( E. x  x  =  A  ->  ph )
62, 5ax-mp 5 1  |-  ph
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437   E.wex 1659   F/wnf 1663    e. wcel 1870   _Vcvv 3087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-12 1907  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-v 3089
This theorem is referenced by:  nn0ind-raph  11035
  Copyright terms: Public domain W3C validator