MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3 Structured version   Visualization version   Unicode version

Theorem vtocl3 3115
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
vtocl3.1  |-  A  e. 
_V
vtocl3.2  |-  B  e. 
_V
vtocl3.3  |-  C  e. 
_V
vtocl3.4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
vtocl3.5  |-  ph
Assertion
Ref Expression
vtocl3  |-  ps
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem vtocl3
StepHypRef Expression
1 vtocl3.1 . . . . . . 7  |-  A  e. 
_V
21isseti 3063 . . . . . 6  |-  E. x  x  =  A
3 vtocl3.2 . . . . . . 7  |-  B  e. 
_V
43isseti 3063 . . . . . 6  |-  E. y 
y  =  B
5 vtocl3.3 . . . . . . 7  |-  C  e. 
_V
65isseti 3063 . . . . . 6  |-  E. z 
z  =  C
7 eeeanv 2090 . . . . . . 7  |-  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  <->  ( E. x  x  =  A  /\  E. y  y  =  B  /\  E. z 
z  =  C ) )
8 vtocl3.4 . . . . . . . . . 10  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
98biimpd 212 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  ->  ps ) )
109eximi 1718 . . . . . . . 8  |-  ( E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  E. z
( ph  ->  ps )
)
11102eximi 1719 . . . . . . 7  |-  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  E. x E. y E. z (
ph  ->  ps ) )
127, 11sylbir 218 . . . . . 6  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B  /\  E. z  z  =  C )  ->  E. x E. y E. z (
ph  ->  ps ) )
132, 4, 6, 12mp3an 1373 . . . . 5  |-  E. x E. y E. z (
ph  ->  ps )
14 19.36v 1831 . . . . . 6  |-  ( E. z ( ph  ->  ps )  <->  ( A. z ph  ->  ps ) )
15142exbii 1730 . . . . 5  |-  ( E. x E. y E. z ( ph  ->  ps )  <->  E. x E. y
( A. z ph  ->  ps ) )
1613, 15mpbi 213 . . . 4  |-  E. x E. y ( A. z ph  ->  ps )
17 19.36v 1831 . . . . 5  |-  ( E. y ( A. z ph  ->  ps )  <->  ( A. y A. z ph  ->  ps ) )
1817exbii 1729 . . . 4  |-  ( E. x E. y ( A. z ph  ->  ps )  <->  E. x ( A. y A. z ph  ->  ps ) )
1916, 18mpbi 213 . . 3  |-  E. x
( A. y A. z ph  ->  ps )
201919.36iv 1832 . 2  |-  ( A. x A. y A. z ph  ->  ps )
21 vtocl3.5 . . 3  |-  ph
2221gen2 1681 . 2  |-  A. y A. z ph
2320, 22mpg 1682 1  |-  ps
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ w3a 991   A.wal 1453    = wceq 1455   E.wex 1674    e. wcel 1898   _Vcvv 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-v 3059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator