MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl Structured version   Unicode version

Theorem vtocl 3130
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtocl.1  |-  A  e. 
_V
vtocl.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl.3  |-  ph
Assertion
Ref Expression
vtocl  |-  ps
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtocl
StepHypRef Expression
1 nfv 1674 . 2  |-  F/ x ps
2 vtocl.1 . 2  |-  A  e. 
_V
3 vtocl.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 vtocl.3 . 2  |-  ph
51, 2, 3, 4vtoclf 3129 1  |-  ps
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   _Vcvv 3078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-v 3080
This theorem is referenced by:  vtoclb  3133  zfauscl  4526  pwex  4586  fnbrfvb  5844  caovcan  6380  uniex  6489  findcard2  7666  zfregcl  7923  bnd2  8214  kmlem2  8434  axcc2lem  8719  dominf  8728  dcomex  8730  ac4c  8759  ac5  8760  dominfac  8851  pwfseqlem4  8943  grothomex  9110  ramub2  14196  ismred2  14663  dvfsumlem2  21635  plydivlem4  21898  frmin  27867  voliunnfl  28603  volsupnfl  28604  prdsbnd2  28862  iscringd  28967  monotoddzzfi  29451  monotoddzz  29452  bnj865  32268  bnj1015  32306
  Copyright terms: Public domain W3C validator