MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpinv Structured version   Unicode version

Theorem vrgpinv 16278
Description: The inverse of a generating element is represented by  <. A ,  1 >. instead of  <. A ,  0
>.. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r  |-  .~  =  ( ~FG  `  I )
vrgpfval.u  |-  U  =  (varFGrp `  I )
vrgpf.m  |-  G  =  (freeGrp `  I )
vrgpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
vrgpinv  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( N `  ( U `  A )
)  =  [ <"
<. A ,  1o >. "> ]  .~  )

Proof of Theorem vrgpinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4  |-  .~  =  ( ~FG  `  I )
2 vrgpfval.u . . . 4  |-  U  =  (varFGrp `  I )
31, 2vrgpval 16276 . . 3  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
43fveq2d 5707 . 2  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( N `  ( U `  A )
)  =  ( N `
 [ <" <. A ,  (/) >. "> ]  .~  ) )
5 simpr 461 . . . . . 6  |-  ( ( I  e.  V  /\  A  e.  I )  ->  A  e.  I )
6 0ex 4434 . . . . . . . 8  |-  (/)  e.  _V
76prid1 3995 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
8 df2o3 6945 . . . . . . 7  |-  2o  =  { (/) ,  1o }
97, 8eleqtrri 2516 . . . . . 6  |-  (/)  e.  2o
10 opelxpi 4883 . . . . . 6  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  ->  <. A ,  (/) >.  e.  ( I  X.  2o ) )
115, 9, 10sylancl 662 . . . . 5  |-  ( ( I  e.  V  /\  A  e.  I )  -> 
<. A ,  (/) >.  e.  ( I  X.  2o ) )
1211s1cld 12306 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  <" <. A ,  (/)
>. ">  e. Word  (
I  X.  2o ) )
13 simpl 457 . . . . . 6  |-  ( ( I  e.  V  /\  A  e.  I )  ->  I  e.  V )
14 2on 6940 . . . . . 6  |-  2o  e.  On
15 xpexg 6519 . . . . . 6  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
1613, 14, 15sylancl 662 . . . . 5  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( I  X.  2o )  e.  _V )
17 wrdexg 12256 . . . . 5  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
18 fvi 5760 . . . . 5  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
1916, 17, 183syl 20 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2012, 19eleqtrrd 2520 . . 3  |-  ( ( I  e.  V  /\  A  e.  I )  ->  <" <. A ,  (/)
>. ">  e.  (  _I  ` Word  ( I  X.  2o ) ) )
21 eqid 2443 . . . 4  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
22 vrgpf.m . . . 4  |-  G  =  (freeGrp `  I )
23 vrgpinv.n . . . 4  |-  N  =  ( invg `  G )
24 eqid 2443 . . . 4  |-  ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \ 
y ) >. )  =  ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. )
2521, 22, 1, 23, 24frgpinv 16273 . . 3  |-  ( <" <. A ,  (/) >. ">  e.  (  _I 
` Word  ( I  X.  2o ) )  ->  ( N `  [ <" <. A ,  (/) >. "> ]  .~  )  =  [ (
( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o 
\  y ) >.
)  o.  (reverse `  <"
<. A ,  (/) >. "> ) ) ]  .~  )
2620, 25syl 16 . 2  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( N `  [ <" <. A ,  (/) >. "> ]  .~  )  =  [ ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \ 
y ) >. )  o.  (reverse `  <" <. A ,  (/) >. "> )
) ]  .~  )
27 revs1 12417 . . . . . 6  |-  (reverse `  <"
<. A ,  (/) >. "> )  =  <" <. A ,  (/) >. ">
2827a1i 11 . . . . 5  |-  ( ( I  e.  V  /\  A  e.  I )  ->  (reverse `  <" <. A ,  (/) >. "> )  =  <" <. A ,  (/)
>. "> )
2928coeq2d 5014 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. )  o.  (reverse ` 
<" <. A ,  (/) >. "> ) )  =  ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. )  o.  <" <. A ,  (/) >. "> )
)
3024efgmf 16222 . . . . 5  |-  ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \ 
y ) >. ) : ( I  X.  2o ) --> ( I  X.  2o )
31 s1co 12473 . . . . 5  |-  ( (
<. A ,  (/) >.  e.  ( I  X.  2o )  /\  ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. ) : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( (
x  e.  I ,  y  e.  2o  |->  <.
x ,  ( 1o 
\  y ) >.
)  o.  <" <. A ,  (/) >. "> )  =  <" ( ( x  e.  I ,  y  e.  2o  |->  <.
x ,  ( 1o 
\  y ) >.
) `  <. A ,  (/)
>. ) "> )
3211, 30, 31sylancl 662 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. )  o.  <" <. A ,  (/) >. "> )  =  <" ( ( x  e.  I ,  y  e.  2o  |->  <.
x ,  ( 1o 
\  y ) >.
) `  <. A ,  (/)
>. ) "> )
3324efgmval 16221 . . . . . . 7  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  -> 
( A ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \ 
y ) >. ) (/) )  =  <. A , 
( 1o  \  (/) ) >.
)
345, 9, 33sylancl 662 . . . . . 6  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( A ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \ 
y ) >. ) (/) )  =  <. A , 
( 1o  \  (/) ) >.
)
35 df-ov 6106 . . . . . 6  |-  ( A ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o 
\  y ) >.
) (/) )  =  ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o 
\  y ) >.
) `  <. A ,  (/)
>. )
36 dif0 3761 . . . . . . 7  |-  ( 1o 
\  (/) )  =  1o
3736opeq2i 4075 . . . . . 6  |-  <. A , 
( 1o  \  (/) ) >.  =  <. A ,  1o >.
3834, 35, 373eqtr3g 2498 . . . . 5  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. ) `  <. A ,  (/)
>. )  =  <. A ,  1o >. )
3938s1eqd 12304 . . . 4  |-  ( ( I  e.  V  /\  A  e.  I )  ->  <" ( ( x  e.  I ,  y  e.  2o  |->  <.
x ,  ( 1o 
\  y ) >.
) `  <. A ,  (/)
>. ) ">  =  <" <. A ,  1o >. "> )
4029, 32, 393eqtrd 2479 . . 3  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \  y )
>. )  o.  (reverse ` 
<" <. A ,  (/) >. "> ) )  = 
<" <. A ,  1o >. "> )
41 eceq1 7149 . . 3  |-  ( ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o 
\  y ) >.
)  o.  (reverse `  <"
<. A ,  (/) >. "> ) )  =  <"
<. A ,  1o >. ">  ->  [ (
( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o 
\  y ) >.
)  o.  (reverse `  <"
<. A ,  (/) >. "> ) ) ]  .~  =  [ <" <. A ,  1o >. "> ]  .~  )
4240, 41syl 16 . 2  |-  ( ( I  e.  V  /\  A  e.  I )  ->  [ ( ( x  e.  I ,  y  e.  2o  |->  <. x ,  ( 1o  \ 
y ) >. )  o.  (reverse `  <" <. A ,  (/) >. "> )
) ]  .~  =  [ <" <. A ,  1o >. "> ]  .~  )
434, 26, 423eqtrd 2479 1  |-  ( ( I  e.  V  /\  A  e.  I )  ->  ( N `  ( U `  A )
)  =  [ <"
<. A ,  1o >. "> ]  .~  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2984    \ cdif 3337   (/)c0 3649   {cpr 3891   <.cop 3895    _I cid 4643   Oncon0 4731    X. cxp 4850    o. ccom 4856   -->wf 5426   ` cfv 5430  (class class class)co 6103    e. cmpt2 6105   1oc1o 6925   2oc2o 6926   [cec 7111  Word cword 12233   <"cs1 12236  reversecreverse 12239   invgcminusg 15423   ~FG cefg 16215  freeGrpcfrgp 16216  varFGrpcvrgp 16217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-ot 3898  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-ec 7115  df-qs 7119  df-map 7228  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-fz 11450  df-fzo 11561  df-hash 12116  df-word 12241  df-concat 12243  df-s1 12244  df-substr 12245  df-splice 12246  df-reverse 12247  df-s2 12487  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-plusg 14263  df-mulr 14264  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-0g 14392  df-imas 14458  df-divs 14459  df-mnd 15427  df-frmd 15539  df-grp 15557  df-minusg 15558  df-efg 16218  df-frgp 16219  df-vrgp 16220
This theorem is referenced by:  frgpup3lem  16286
  Copyright terms: Public domain W3C validator