MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Structured version   Unicode version

Theorem volivth 21109
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive  B  <_  ( vol `  A ), there is a measurable subset of  A whose volume is  B. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem volivth
Dummy variables  u  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  A  e.  dom  vol )
2 mnfxr 11115 . . . . . 6  |- -oo  e.  RR*
32a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  -> -oo  e.  RR* )
4 iccssxr 11399 . . . . . . 7  |-  ( 0 [,] ( vol `  A
) )  C_  RR*
5 simpr 461 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  e.  ( 0 [,] ( vol `  A
) ) )
64, 5sseldi 3375 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  e.  RR* )
76adantr 465 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  e.  RR* )
8 iccssxr 11399 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
9 volf 21034 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] +oo )
109ffvelrni 5863 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] +oo ) )
118, 10sseldi 3375 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
1211adantr 465 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( vol `  A
)  e.  RR* )
1312adantr 465 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  ( vol `  A
)  e.  RR* )
14 0xr 9451 . . . . . . . . . 10  |-  0  e.  RR*
15 elicc1 11365 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  e.  ( 0 [,] ( vol `  A
) )  <->  ( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A ) ) ) )
1614, 12, 15sylancr 663 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  e.  ( 0 [,] ( vol `  A ) )  <->  ( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A ) ) ) )
175, 16mpbid 210 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A
) ) )
1817simp2d 1001 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
0  <_  B )
1918adantr 465 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  0  <_  B
)
20 mnflt0 11126 . . . . . . . 8  |- -oo  <  0
21 xrltletr 11152 . . . . . . . 8  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  (
( -oo  <  0  /\  0  <_  B )  -> -oo  <  B ) )
2220, 21mpani 676 . . . . . . 7  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  (
0  <_  B  -> -oo 
<  B ) )
232, 14, 22mp3an12 1304 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0  <_  B  -> -oo  <  B ) )
247, 19, 23sylc 60 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  -> -oo  <  B )
25 simpr 461 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  <  ( vol `  A ) )
26 xrre2 11163 . . . . 5  |-  ( ( ( -oo  e.  RR*  /\  B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  /\  ( -oo  <  B  /\  B  <  ( vol `  A
) ) )  ->  B  e.  RR )
273, 7, 13, 24, 25, 26syl32anc 1226 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  e.  RR )
28 volsup2 21107 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
291, 27, 25, 28syl3anc 1218 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
30 nnre 10350 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  RR )
3130ad2antrl 727 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  n  e.  RR )
3231renegcld 9796 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  e.  RR )
3327adantr 465 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  e.  RR )
34 0red 9408 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  e.  RR )
35 nngt0 10372 . . . . . . . 8  |-  ( n  e.  NN  ->  0  <  n )
3635ad2antrl 727 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  <  n )
3731lt0neg2d 9931 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
0  <  n  <->  -u n  <  0 ) )
3836, 37mpbid 210 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  <  0 )
3932, 34, 31, 38, 36lttrd 9553 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  <  n )
40 iccssre 11398 . . . . . 6  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  C_  RR )
4132, 31, 40syl2anc 661 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] n ) 
C_  RR )
42 ax-resscn 9360 . . . . . . 7  |-  RR  C_  CC
43 ssid 3396 . . . . . . 7  |-  CC  C_  CC
44 cncfss 20497 . . . . . . 7  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR -cn-> RR )  C_  ( RR -cn-> CC ) )
4542, 43, 44mp2an 672 . . . . . 6  |-  ( RR
-cn-> RR )  C_  ( RR -cn-> CC )
461adantr 465 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  A  e.  dom  vol )
47 eqid 2443 . . . . . . . 8  |-  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  =  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )
4847volcn 21108 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  -u n  e.  RR )  ->  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR ) )
4946, 32, 48syl2anc 661 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR ) )
5045, 49sseldi 3375 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> CC ) )
5141sselda 3377 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  ( -u n [,] n ) )  ->  u  e.  RR )
52 cncff 20491 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR )
5349, 52syl 16 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR )
5453ffvelrnda 5864 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  RR )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
5551, 54syldan 470 . . . . 5  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  ( -u n [,] n ) )  -> 
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
56 oveq2 6120 . . . . . . . . . . . 12  |-  ( y  =  -u n  ->  ( -u n [,] y )  =  ( -u n [,] -u n ) )
5756ineq2d 3573 . . . . . . . . . . 11  |-  ( y  =  -u n  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] -u n
) ) )
5857fveq2d 5716 . . . . . . . . . 10  |-  ( y  =  -u n  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] -u n ) ) ) )
59 fvex 5722 . . . . . . . . . 10  |-  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) )  e. 
_V
6058, 47, 59fvmpt 5795 . . . . . . . . 9  |-  ( -u n  e.  RR  ->  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) ) )
6132, 60syl 16 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) ) )
62 inss2 3592 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u n [,] -u n ) ) 
C_  ( -u n [,] -u n )
6332rexrd 9454 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  e.  RR* )
64 iccid 11366 . . . . . . . . . . . . 13  |-  ( -u n  e.  RR*  ->  ( -u n [,] -u n
)  =  { -u n } )
6563, 64syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] -u n
)  =  { -u n } )
6662, 65syl5sseq 3425 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) ) 
C_  { -u n } )
6732snssd 4039 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  { -u n }  C_  RR )
6866, 67sstrd 3387 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) ) 
C_  RR )
69 ovolsn 21000 . . . . . . . . . . . 12  |-  ( -u n  e.  RR  ->  ( vol* `  { -u n } )  =  0 )
7032, 69syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol* `  { -u n } )  =  0 )
71 ovolssnul 20992 . . . . . . . . . . 11  |-  ( ( ( A  i^i  ( -u n [,] -u n
) )  C_  { -u n }  /\  { -u n }  C_  RR  /\  ( vol* `  { -u n } )  =  0 )  ->  ( vol* `  ( A  i^i  ( -u n [,] -u n ) ) )  =  0 )
7266, 67, 70, 71syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol* `  ( A  i^i  ( -u n [,] -u n ) ) )  =  0 )
73 nulmbl 21039 . . . . . . . . . 10  |-  ( ( ( A  i^i  ( -u n [,] -u n
) )  C_  RR  /\  ( vol* `  ( A  i^i  ( -u n [,] -u n
) ) )  =  0 )  ->  ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol )
7468, 72, 73syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol )
75 mblvol 21035 . . . . . . . . 9  |-  ( ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] -u n ) ) )  =  ( vol* `  ( A  i^i  ( -u n [,] -u n ) ) ) )
7674, 75syl 16 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) )  =  ( vol* `  ( A  i^i  ( -u n [,] -u n
) ) ) )
7761, 76, 723eqtrd 2479 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  0 )
7819adantr 465 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  <_  B )
7977, 78eqbrtrd 4333 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  <_  B )
80 simprr 756 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
817adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  e.  RR* )
82 iccmbl 21069 . . . . . . . . . . . 12  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  e.  dom  vol )
8332, 31, 82syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] n )  e.  dom  vol )
84 inmbl 21045 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] n )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
8546, 83, 84syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
869ffvelrni 5863 . . . . . . . . . . 11  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  ( 0 [,] +oo ) )
878, 86sseldi 3375 . . . . . . . . . 10  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
8885, 87syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )
89 xrltle 11147 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) ) )
9081, 88, 89syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) ) )
9180, 90mpd 15 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
92 oveq2 6120 . . . . . . . . . . 11  |-  ( y  =  n  ->  ( -u n [,] y )  =  ( -u n [,] n ) )
9392ineq2d 3573 . . . . . . . . . 10  |-  ( y  =  n  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] n ) ) )
9493fveq2d 5716 . . . . . . . . 9  |-  ( y  =  n  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
95 fvex 5722 . . . . . . . . 9  |-  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  _V
9694, 47, 95fvmpt 5795 . . . . . . . 8  |-  ( n  e.  RR  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
9731, 96syl 16 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
9891, 97breqtrrd 4339 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <_  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n ) )
9979, 98jca 532 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  <_  B  /\  B  <_  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n ) ) )
10032, 31, 33, 39, 41, 50, 55, 99ivthle 20962 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  E. z  e.  ( -u n [,] n ) ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B )
10141sselda 3377 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
z  e.  RR )
102 oveq2 6120 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( -u n [,] y )  =  ( -u n [,] z ) )
103102ineq2d 3573 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] z ) ) )
104103fveq2d 5716 . . . . . . . . 9  |-  ( y  =  z  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
105 fvex 5722 . . . . . . . . 9  |-  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  e.  _V
106104, 47, 105fvmpt 5795 . . . . . . . 8  |-  ( z  e.  RR  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
107101, 106syl 16 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
108107eqeq1d 2451 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  <-> 
( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )
10946adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  A  e.  dom  vol )
11032adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  -u n  e.  RR )
111101adantrr 716 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  z  e.  RR )
112 iccmbl 21069 . . . . . . . . . 10  |-  ( (
-u n  e.  RR  /\  z  e.  RR )  ->  ( -u n [,] z )  e.  dom  vol )
113110, 111, 112syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( -u n [,] z )  e.  dom  vol )
114 inmbl 21045 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] z )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] z ) )  e. 
dom  vol )
115109, 113, 114syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( A  i^i  ( -u n [,] z
) )  e.  dom  vol )
116 inss1 3591 . . . . . . . . 9  |-  ( A  i^i  ( -u n [,] z ) )  C_  A
117116a1i 11 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( A  i^i  ( -u n [,] z
) )  C_  A
)
118 simprr 756 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B )
119 sseq1 3398 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
x  C_  A  <->  ( A  i^i  ( -u n [,] z ) )  C_  A ) )
120 fveq2 5712 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  ( vol `  x )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
121120eqeq1d 2451 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
( vol `  x
)  =  B  <->  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )
122119, 121anbi12d 710 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
( x  C_  A  /\  ( vol `  x
)  =  B )  <-> 
( ( A  i^i  ( -u n [,] z
) )  C_  A  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) ) )
123122rspcev 3094 . . . . . . . 8  |-  ( ( ( A  i^i  ( -u n [,] z ) )  e.  dom  vol  /\  ( ( A  i^i  ( -u n [,] z
) )  C_  A  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
124115, 117, 118, 123syl12anc 1216 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
125124expr 615 . . . . . 6  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) ) )
126108, 125sylbid 215 . . . . 5  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) ) )
127126rexlimdva 2862 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( E. z  e.  ( -u n [,] n ) ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) ) )
128100, 127mpd 15 . . 3  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
12929, 128rexlimddv 2866 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
130 simpll 753 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  A  e.  dom  vol )
131 ssid 3396 . . . 4  |-  A  C_  A
132131a1i 11 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  A  C_  A
)
133 simpr 461 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  B  =  ( vol `  A ) )
134133eqcomd 2448 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  ( vol `  A )  =  B )
135 sseq1 3398 . . . . 5  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
136 fveq2 5712 . . . . . 6  |-  ( x  =  A  ->  ( vol `  x )  =  ( vol `  A
) )
137136eqeq1d 2451 . . . . 5  |-  ( x  =  A  ->  (
( vol `  x
)  =  B  <->  ( vol `  A )  =  B ) )
138135, 137anbi12d 710 . . . 4  |-  ( x  =  A  ->  (
( x  C_  A  /\  ( vol `  x
)  =  B )  <-> 
( A  C_  A  /\  ( vol `  A
)  =  B ) ) )
139138rspcev 3094 . . 3  |-  ( ( A  e.  dom  vol  /\  ( A  C_  A  /\  ( vol `  A
)  =  B ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
140130, 132, 134, 139syl12anc 1216 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
14117simp3d 1002 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  <_  ( vol `  A
) )
142 xrleloe 11142 . . . 4  |-  ( ( B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  <_  ( vol `  A
)  <->  ( B  < 
( vol `  A
)  \/  B  =  ( vol `  A
) ) ) )
1436, 12, 142syl2anc 661 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  <_  ( vol `  A )  <->  ( B  <  ( vol `  A
)  \/  B  =  ( vol `  A
) ) ) )
144141, 143mpbid 210 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  <  ( vol `  A )  \/  B  =  ( vol `  A ) ) )
145129, 140, 144mpjaodan 784 1  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2737    i^i cin 3348    C_ wss 3349   {csn 3898   class class class wbr 4313    e. cmpt 4371   dom cdm 4861   -->wf 5435   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303   +oocpnf 9436   -oocmnf 9437   RR*cxr 9438    < clt 9439    <_ cle 9440   -ucneg 9617   NNcn 10343   [,]cicc 11324   -cn->ccncf 20474   vol*covol 20968   volcvol 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cc 8625  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-disj 4284  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-rlim 12988  df-sum 13185  df-rest 14382  df-topgen 14403  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-top 18525  df-bases 18527  df-topon 18528  df-cmp 19012  df-cncf 20476  df-ovol 20970  df-vol 20971
This theorem is referenced by:  itg2const2  21241
  Copyright terms: Public domain W3C validator