Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunnfl Structured version   Unicode version

Theorem voliunnfl 29622
Description: voliun 21692 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
Hypotheses
Ref Expression
voliunnfl.1  |-  S  =  seq 1 (  +  ,  G )
voliunnfl.2  |-  G  =  ( n  e.  NN  |->  ( vol `  ( f `
 n ) ) )
voliunnfl.3  |-  ( ( A. n  e.  NN  ( ( f `  n )  e.  dom  vol 
/\  ( vol `  (
f `  n )
)  e.  RR )  /\ Disj  n  e.  NN  (
f `  n )
)  ->  ( vol ` 
U_ n  e.  NN  ( f `  n
) )  =  sup ( ran  S ,  RR* ,  <  ) )
Assertion
Ref Expression
voliunnfl  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  U. A  =/=  RR )
Distinct variable group:    f, n, x, A
Allowed substitution hints:    S( x, f, n)    G( x, f, n)

Proof of Theorem voliunnfl
Dummy variables  g  m  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4246 . . . . . . . . 9  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
2 uni0 4265 . . . . . . . . 9  |-  U. (/)  =  (/)
31, 2syl6eq 2517 . . . . . . . 8  |-  ( A  =  (/)  ->  U. A  =  (/) )
43fveq2d 5861 . . . . . . 7  |-  ( A  =  (/)  ->  ( vol `  U. A )  =  ( vol `  (/) ) )
5 0mbl 21678 . . . . . . . . 9  |-  (/)  e.  dom  vol
6 mblvol 21669 . . . . . . . . 9  |-  ( (/)  e.  dom  vol  ->  ( vol `  (/) )  =  ( vol* `  (/) ) )
75, 6ax-mp 5 . . . . . . . 8  |-  ( vol `  (/) )  =  ( vol* `  (/) )
8 ovol0 21632 . . . . . . . 8  |-  ( vol* `  (/) )  =  0
97, 8eqtri 2489 . . . . . . 7  |-  ( vol `  (/) )  =  0
104, 9syl6req 2518 . . . . . 6  |-  ( A  =  (/)  ->  0  =  ( vol `  U. A ) )
1110a1d 25 . . . . 5  |-  ( A  =  (/)  ->  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol `  U. A ) ) )
12 reldom 7512 . . . . . . . . . . 11  |-  Rel  ~<_
1312brrelexi 5032 . . . . . . . . . 10  |-  ( A  ~<_  NN  ->  A  e.  _V )
14 0sdomg 7636 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
1513, 14syl 16 . . . . . . . . 9  |-  ( A  ~<_  NN  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1615biimparc 487 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  (/)  ~<  A )
17 fodomr 7658 . . . . . . . 8  |-  ( (
(/)  ~<  A  /\  A  ~<_  NN )  ->  E. g 
g : NN -onto-> A
)
1816, 17sylancom 667 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  E. g 
g : NN -onto-> A
)
19 unissb 4270 . . . . . . . . . . . . 13  |-  ( U. A  C_  RR  <->  A. x  e.  A  x  C_  RR )
2019anbi1i 695 . . . . . . . . . . . 12  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  <->  ( A. x  e.  A  x  C_  RR  /\  A. x  e.  A  x  ~<_  NN ) )
21 r19.26 2982 . . . . . . . . . . . 12  |-  ( A. x  e.  A  (
x  C_  RR  /\  x  ~<_  NN )  <->  ( A. x  e.  A  x  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN ) )
2220, 21bitr4i 252 . . . . . . . . . . 11  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  <->  A. x  e.  A  ( x  C_  RR  /\  x  ~<_  NN ) )
23 ovolctb2 21631 . . . . . . . . . . . . . 14  |-  ( ( x  C_  RR  /\  x  ~<_  NN )  ->  ( vol* `  x )  =  0 )
2423ex 434 . . . . . . . . . . . . 13  |-  ( x 
C_  RR  ->  ( x  ~<_  NN  ->  ( vol* `  x )  =  0 ) )
2524imdistani 690 . . . . . . . . . . . 12  |-  ( ( x  C_  RR  /\  x  ~<_  NN )  ->  ( x 
C_  RR  /\  ( vol* `  x )  =  0 ) )
2625ralimi 2850 . . . . . . . . . . 11  |-  ( A. x  e.  A  (
x  C_  RR  /\  x  ~<_  NN )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )
2722, 26sylbi 195 . . . . . . . . . 10  |-  ( ( U. A  C_  RR  /\ 
A. x  e.  A  x  ~<_  NN )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x
)  =  0 ) )
2827ancoms 453 . . . . . . . . 9  |-  ( ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR )  ->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 ) )
29 foima 5791 . . . . . . . . . . . 12  |-  ( g : NN -onto-> A  -> 
( g " NN )  =  A )
3029raleqdv 3057 . . . . . . . . . . 11  |-  ( g : NN -onto-> A  -> 
( A. x  e.  ( g " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x
)  =  0 ) ) )
31 fofn 5788 . . . . . . . . . . . 12  |-  ( g : NN -onto-> A  -> 
g  Fn  NN )
32 ssid 3516 . . . . . . . . . . . 12  |-  NN  C_  NN
33 sseq1 3518 . . . . . . . . . . . . . 14  |-  ( x  =  ( g `  m )  ->  (
x  C_  RR  <->  ( g `  m )  C_  RR ) )
34 fveq2 5857 . . . . . . . . . . . . . . 15  |-  ( x  =  ( g `  m )  ->  ( vol* `  x )  =  ( vol* `  ( g `  m
) ) )
3534eqeq1d 2462 . . . . . . . . . . . . . 14  |-  ( x  =  ( g `  m )  ->  (
( vol* `  x )  =  0  <-> 
( vol* `  ( g `  m
) )  =  0 ) )
3633, 35anbi12d 710 . . . . . . . . . . . . 13  |-  ( x  =  ( g `  m )  ->  (
( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  ( ( g `
 m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) ) )
3736ralima 6131 . . . . . . . . . . . 12  |-  ( ( g  Fn  NN  /\  NN  C_  NN )  -> 
( A. x  e.  ( g " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) ) )
3831, 32, 37sylancl 662 . . . . . . . . . . 11  |-  ( g : NN -onto-> A  -> 
( A. x  e.  ( g " NN ) ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) ) )
3930, 38bitr3d 255 . . . . . . . . . 10  |-  ( g : NN -onto-> A  -> 
( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  <->  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) ) )
40 difss 3624 . . . . . . . . . . . . . . . . . 18  |-  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) )  C_  ( g `  m )
41 ovolssnul 21626 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) 
C_  ( g `  m )  /\  (
g `  m )  C_  RR  /\  ( vol* `  ( g `  m ) )  =  0 )  ->  ( vol* `  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  =  0 )
4240, 41mp3an1 1306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  -> 
( vol* `  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) )  =  0 )
43 ssdifss 3628 . . . . . . . . . . . . . . . . . 18  |-  ( ( g `  m ) 
C_  RR  ->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) )  C_  RR )
44 nulmbl 21674 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) 
C_  RR  /\  ( vol* `  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  =  0 )  ->  ( (
g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `  l ) )  e.  dom  vol )
45 mblvol 21669 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
->  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  =  ( vol* `  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) )
4645eqeq1d 2462 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
->  ( ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  =  0  <->  ( vol* `  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) )  =  0 ) )
4746biimpar 485 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) )  e.  dom  vol  /\  ( vol* `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  =  0 )  ->  ( vol `  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  =  0 )
48 0re 9585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  RR
4947, 48syl6eqel 2556 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) )  e.  dom  vol  /\  ( vol* `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  =  0 )  ->  ( vol `  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  e.  RR )
5049expcom 435 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( vol* `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  =  0  ->  ( (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
->  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
5150ancld 553 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( vol* `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  =  0  ->  ( (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
->  ( ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) ) )
5251adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) 
C_  RR  /\  ( vol* `  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  =  0 )  ->  ( (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
->  ( ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) ) )
5344, 52mpd 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) 
C_  RR  /\  ( vol* `  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  =  0 )  ->  ( (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
/\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
5443, 53sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g `  m
)  C_  RR  /\  ( vol* `  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  =  0 )  ->  ( (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
/\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
5542, 54syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  -> 
( ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
5655ralimi 2850 . . . . . . . . . . . . . . 15  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  ->  A. m  e.  NN  ( ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
57 fveq2 5857 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (
g `  m )  =  ( g `  n ) )
58 oveq2 6283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
1..^ m )  =  ( 1..^ n ) )
5958iuneq1d 4343 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  U_ l  e.  ( 1..^ m ) ( g `  l
)  =  U_ l  e.  ( 1..^ n ) ( g `  l
) )
6057, 59difeq12d 3616 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  =  ( ( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )
61 eqid 2460 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  =  ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )
62 fvex 5867 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g `
 n )  e. 
_V
63 difexg 4588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( g `  n )  e.  _V  ->  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) )  e.  _V )
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) )  e.  _V
6560, 61, 64fvmpt 5941 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n )  =  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )
6665eleq1d 2529 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  <->  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) )  e.  dom  vol ) )
6765fveq2d 5861 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
) )  =  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) )
6867eleq1d 2529 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR  <->  ( vol `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) )  e.  RR ) )
6966, 68anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  <-> 
( ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  e.  RR ) ) )
7069ralbiia 2887 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  NN  (
( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  <->  A. n  e.  NN  ( ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  e.  RR ) )
71 fveq2 5857 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
72 oveq2 6283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  m  ->  (
1..^ n )  =  ( 1..^ m ) )
7372iuneq1d 4343 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  m  ->  U_ l  e.  ( 1..^ n ) ( g `  l
)  =  U_ l  e.  ( 1..^ m ) ( g `  l
) )
7471, 73difeq12d 3616 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  m  ->  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) )  =  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )
7574eleq1d 2529 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  (
( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) )  e.  dom  vol  <->  ( (
g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `  l ) )  e.  dom  vol ) )
7674fveq2d 5861 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  m  ->  ( vol `  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )  =  ( vol `  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) )
7776eleq1d 2529 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  (
( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  e.  RR  <->  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
7875, 77anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
( ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  e.  RR )  <->  ( (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) )  e.  dom  vol 
/\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) ) )
7978cbvralv 3081 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  NN  (
( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) )  e.  dom  vol  /\  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) )  e.  RR ) 
<-> 
A. m  e.  NN  ( ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
8070, 79bitri 249 . . . . . . . . . . . . . . 15  |-  ( A. n  e.  NN  (
( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  <->  A. m  e.  NN  ( ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) )  e.  dom  vol  /\  ( vol `  (
( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) )  e.  RR ) )
8156, 80sylibr 212 . . . . . . . . . . . . . 14  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  ->  A. n  e.  NN  ( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR ) )
82 fveq2 5857 . . . . . . . . . . . . . . . 16  |-  ( n  =  l  ->  (
g `  n )  =  ( g `  l ) )
8382iundisj2 21687 . . . . . . . . . . . . . . 15  |- Disj  n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )
84 disjeq2 4414 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  NN  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n )  =  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )  ->  (Disj  n  e.  NN  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  <-> Disj  n  e.  NN  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) ) )
8584, 65mprg 2820 . . . . . . . . . . . . . . 15  |-  (Disj  n  e.  NN  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  <-> Disj  n  e.  NN  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )
8683, 85mpbir 209 . . . . . . . . . . . . . 14  |- Disj  n  e.  NN  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)
87 nnex 10531 . . . . . . . . . . . . . . . . 17  |-  NN  e.  _V
8887mptex 6122 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  e.  _V
89 fveq1 5856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
f `  n )  =  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
) )
9089eleq1d 2529 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
( f `  n
)  e.  dom  vol  <->  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n )  e.  dom  vol )
)
9189fveq2d 5861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  ( vol `  ( f `  n ) )  =  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) ) )
9291eleq1d 2529 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
( vol `  (
f `  n )
)  e.  RR  <->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) )  e.  RR ) )
9390, 92anbi12d 710 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
( ( f `  n )  e.  dom  vol 
/\  ( vol `  (
f `  n )
)  e.  RR )  <-> 
( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR ) ) )
9493ralbidv 2896 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  ( A. n  e.  NN  ( ( f `  n )  e.  dom  vol 
/\  ( vol `  (
f `  n )
)  e.  RR )  <->  A. n  e.  NN  ( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR ) ) )
9589adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  =  ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) )  /\  n  e.  NN )  ->  (
f `  n )  =  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
) )
9695disjeq2dv 4415 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (Disj  n  e.  NN  ( f `
 n )  <-> Disj  n  e.  NN  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) )
9794, 96anbi12d 710 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
( A. n  e.  NN  ( ( f `
 n )  e. 
dom  vol  /\  ( vol `  ( f `  n
) )  e.  RR )  /\ Disj  n  e.  NN  (
f `  n )
)  <->  ( A. n  e.  NN  ( ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n )  e.  dom  vol 
/\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  /\ Disj  n  e.  NN  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) ) ) )
9889iuneq2d 4345 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  U_ n  e.  NN  ( f `  n )  =  U_ n  e.  NN  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )
9998fveq2d 5861 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  ( vol `  U_ n  e.  NN  ( f `  n ) )  =  ( vol `  U_ n  e.  NN  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
) ) )
100 voliunnfl.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  S  =  seq 1 (  +  ,  G )
101 voliunnfl.2 . . . . . . . . . . . . . . . . . . . . . . 23  |-  G  =  ( n  e.  NN  |->  ( vol `  ( f `
 n ) ) )
102 seqeq3 12068 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G  =  ( n  e.  NN  |->  ( vol `  (
f `  n )
) )  ->  seq 1 (  +  ,  G )  =  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( f `
 n ) ) ) ) )
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  seq 1
(  +  ,  G
)  =  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  ( f `
 n ) ) ) )
104100, 103eqtri 2489 . . . . . . . . . . . . . . . . . . . . 21  |-  S  =  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
f `  n )
) ) )
105104rneqi 5220 . . . . . . . . . . . . . . . . . . . 20  |-  ran  S  =  ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( f `  n
) ) ) )
106105supeq1i 7896 . . . . . . . . . . . . . . . . . . 19  |-  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran 
seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
f `  n )
) ) ) , 
RR* ,  <  )
10791mpteq2dv 4527 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
n  e.  NN  |->  ( vol `  ( f `
 n ) ) )  =  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) ) )
108107seqeq3d 12071 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( f `
 n ) ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n ) ) ) ) )
109108rneqd 5221 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( f `
 n ) ) ) )  =  ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n ) ) ) ) )
110109supeq1d 7895 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( f `  n
) ) ) ) ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n ) ) ) ) ,  RR* ,  <  ) )
111106, 110syl5eq 2513 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) ) ) ,  RR* ,  <  )
)
11299, 111eqeq12d 2482 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
( vol `  U_ n  e.  NN  ( f `  n ) )  =  sup ( ran  S ,  RR* ,  <  )  <->  ( vol `  U_ n  e.  NN  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
) )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) ) ) ,  RR* ,  <  )
) )
11397, 112imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) )  ->  (
( ( A. n  e.  NN  ( ( f `
 n )  e. 
dom  vol  /\  ( vol `  ( f `  n
) )  e.  RR )  /\ Disj  n  e.  NN  (
f `  n )
)  ->  ( vol ` 
U_ n  e.  NN  ( f `  n
) )  =  sup ( ran  S ,  RR* ,  <  ) )  <->  ( ( A. n  e.  NN  ( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  /\ Disj  n  e.  NN  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  ->  ( vol ` 
U_ n  e.  NN  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) ) ) ,  RR* ,  <  )
) ) )
114 voliunnfl.3 . . . . . . . . . . . . . . . 16  |-  ( ( A. n  e.  NN  ( ( f `  n )  e.  dom  vol 
/\  ( vol `  (
f `  n )
)  e.  RR )  /\ Disj  n  e.  NN  (
f `  n )
)  ->  ( vol ` 
U_ n  e.  NN  ( f `  n
) )  =  sup ( ran  S ,  RR* ,  <  ) )
11588, 113, 114vtocl 3158 . . . . . . . . . . . . . . 15  |-  ( ( A. n  e.  NN  ( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  /\ Disj  n  e.  NN  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  ->  ( vol ` 
U_ n  e.  NN  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) ) ) ,  RR* ,  <  )
)
11665iuneq2i 4337 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  =  U_ n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )
117116fveq2i 5860 . . . . . . . . . . . . . . 15  |-  ( vol `  U_ n  e.  NN  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) )  =  ( vol `  U_ n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )
11867mpteq2ia 4522 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `
 m )  \  U_ l  e.  (
1..^ m ) ( g `  l ) ) ) `  n
) ) )  =  ( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) )
119 seqeq3 12068 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n ) ) )  =  ( n  e.  NN  |->  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) ) ) )  =  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) ) ) ) )
120118, 119ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n ) ) ) )  =  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) ) )
121120rneqi 5220 . . . . . . . . . . . . . . . 16  |-  ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( m  e.  NN  |->  ( ( g `  m
)  \  U_ l  e.  ( 1..^ m ) ( g `  l
) ) ) `  n ) ) ) )  =  ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) ) )
122121supeq1i 7896 . . . . . . . . . . . . . . 15  |-  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) ) ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) ) ) ,  RR* ,  <  )
123115, 117, 1223eqtr3g 2524 . . . . . . . . . . . . . 14  |-  ( ( A. n  e.  NN  ( ( ( m  e.  NN  |->  ( ( g `  m ) 
\  U_ l  e.  ( 1..^ m ) ( g `  l ) ) ) `  n
)  e.  dom  vol  /\  ( vol `  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  e.  RR )  /\ Disj  n  e.  NN  (
( m  e.  NN  |->  ( ( g `  m )  \  U_ l  e.  ( 1..^ m ) ( g `
 l ) ) ) `  n ) )  ->  ( vol ` 
U_ n  e.  NN  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) ) ) ) ,  RR* ,  <  ) )
12481, 86, 123sylancl 662 . . . . . . . . . . . . 13  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  -> 
( vol `  U_ n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) ) ) ) , 
RR* ,  <  ) )
125124adantl 466 . . . . . . . . . . . 12  |-  ( ( g : NN -onto-> A  /\  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) )  ->  ( vol `  U_ n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) ) ) ) , 
RR* ,  <  ) )
12682iundisj 21686 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  NN  ( g `  n )  =  U_ n  e.  NN  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) )
127 fofun 5787 . . . . . . . . . . . . . . . . 17  |-  ( g : NN -onto-> A  ->  Fun  g )
128 funiunfv 6139 . . . . . . . . . . . . . . . . 17  |-  ( Fun  g  ->  U_ n  e.  NN  ( g `  n )  =  U. ( g " NN ) )
129127, 128syl 16 . . . . . . . . . . . . . . . 16  |-  ( g : NN -onto-> A  ->  U_ n  e.  NN  ( g `  n
)  =  U. (
g " NN ) )
130126, 129syl5eqr 2515 . . . . . . . . . . . . . . 15  |-  ( g : NN -onto-> A  ->  U_ n  e.  NN  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) )  =  U. ( g
" NN ) )
13129unieqd 4248 . . . . . . . . . . . . . . 15  |-  ( g : NN -onto-> A  ->  U. ( g " NN )  =  U. A )
132130, 131eqtrd 2501 . . . . . . . . . . . . . 14  |-  ( g : NN -onto-> A  ->  U_ n  e.  NN  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) )  =  U. A )
133132fveq2d 5861 . . . . . . . . . . . . 13  |-  ( g : NN -onto-> A  -> 
( vol `  U_ n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )  =  ( vol `  U. A
) )
134133adantr 465 . . . . . . . . . . . 12  |-  ( ( g : NN -onto-> A  /\  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) )  ->  ( vol `  U_ n  e.  NN  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )  =  ( vol `  U. A
) )
13557sseq1d 3524 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (
( g `  m
)  C_  RR  <->  ( g `  n )  C_  RR ) )
13657fveq2d 5861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  ( vol* `  ( g `
 m ) )  =  ( vol* `  ( g `  n
) ) )
137136eqeq1d 2462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (
( vol* `  ( g `  m
) )  =  0  <-> 
( vol* `  ( g `  n
) )  =  0 ) )
138135, 137anbi12d 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  n  ->  (
( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 )  <->  ( ( g `
 n )  C_  RR  /\  ( vol* `  ( g `  n
) )  =  0 ) ) )
139138rspccva 3206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 )  /\  n  e.  NN )  ->  (
( g `  n
)  C_  RR  /\  ( vol* `  ( g `
 n ) )  =  0 ) )
140 ssdifss 3628 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( g `  n ) 
C_  RR  ->  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) )  C_  RR )
141140adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( g `  n
)  C_  RR  /\  ( vol* `  ( g `
 n ) )  =  0 )  -> 
( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) 
C_  RR )
142 difss 3624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) )  C_  ( g `  n )
143 ovolssnul 21626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) 
C_  ( g `  n )  /\  (
g `  n )  C_  RR  /\  ( vol* `  ( g `  n ) )  =  0 )  ->  ( vol* `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) )  =  0 )
144142, 143mp3an1 1306 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( g `  n
)  C_  RR  /\  ( vol* `  ( g `
 n ) )  =  0 )  -> 
( vol* `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) )  =  0 )
145141, 144jca 532 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( g `  n
)  C_  RR  /\  ( vol* `  ( g `
 n ) )  =  0 )  -> 
( ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) )  C_  RR  /\  ( vol* `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) )  =  0 ) )
146 nulmbl 21674 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) 
C_  RR  /\  ( vol* `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) )  =  0 )  ->  ( (
g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `  l ) )  e.  dom  vol )
147 mblvol 21669 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) )  e.  dom  vol 
->  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  =  ( vol* `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) ) )
148145, 146, 1473syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g `  n
)  C_  RR  /\  ( vol* `  ( g `
 n ) )  =  0 )  -> 
( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  =  ( vol* `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) ) )
149148, 144eqtrd 2501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g `  n
)  C_  RR  /\  ( vol* `  ( g `
 n ) )  =  0 )  -> 
( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) )  =  0 )
150139, 149syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 )  /\  n  e.  NN )  ->  ( vol `  ( ( g `
 n )  \  U_ l  e.  (
1..^ n ) ( g `  l ) ) )  =  0 )
151150mpteq2dva 4526 . . . . . . . . . . . . . . . . 17  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  -> 
( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) )  =  ( n  e.  NN  |->  0 ) )
152151seqeq3d 12071 . . . . . . . . . . . . . . . 16  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) ) )  =  seq 1 (  +  ,  ( n  e.  NN  |->  0 ) ) )
153152rneqd 5221 . . . . . . . . . . . . . . 15  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  ->  ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  (
( g `  n
)  \  U_ l  e.  ( 1..^ n ) ( g `  l
) ) ) ) )  =  ran  seq 1 (  +  , 
( n  e.  NN  |->  0 ) ) )
154153supeq1d 7895 . . . . . . . . . . . . . 14  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  ->  sup ( ran  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) ) ) ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  0 ) ) , 
RR* ,  <  ) )
155 0cn 9577 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  CC
156 ser1const 12119 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  CC  /\  m  e.  NN )  ->  (  seq 1 (  +  ,  ( NN 
X.  { 0 } ) ) `  m
)  =  ( m  x.  0 ) )
157155, 156mpan 670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN  ->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 m )  =  ( m  x.  0 ) )
158 nncn 10533 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  NN  ->  m  e.  CC )
159158mul01d 9767 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN  ->  (
m  x.  0 )  =  0 )
160157, 159eqtrd 2501 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 m )  =  0 )
161160mpteq2ia 4522 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  NN  |->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 m ) )  =  ( m  e.  NN  |->  0 )
162 fconstmpt 5035 . . . . . . . . . . . . . . . . . . . . 21  |-  ( NN 
X.  { 0 } )  =  ( n  e.  NN  |->  0 )
163 seqeq3 12068 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( NN  X.  { 0 } )  =  ( n  e.  NN  |->  0 )  ->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  seq 1 (  +  ,  ( n  e.  NN  |->  0 ) ) )
164162, 163ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  seq 1 (  +  ,  ( n  e.  NN  |->  0 ) )
165 1z 10883 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  ZZ
166 seqfn 12075 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  ( ZZ>= `  1
) )
167165, 166ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  Fn  ( ZZ>= `  1 )
168 nnuz 11106 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  =  ( ZZ>= `  1 )
169168fneq2i 5667 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  NN  <->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  Fn  ( ZZ>= `  1 )
)
170 dffn5 5904 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  NN  <->  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( m  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  m ) ) )
171169, 170bitr3i 251 . . . . . . . . . . . . . . . . . . . . 21  |-  (  seq 1 (  +  , 
( NN  X.  {
0 } ) )  Fn  ( ZZ>= `  1
)  <->  seq 1 (  +  ,  ( NN  X.  { 0 } ) )  =  ( m  e.  NN  |->  (  seq 1 (  +  , 
( NN  X.  {
0 } ) ) `
 m ) ) )
172167, 171mpbi 208 . . . . . . . . . . . . . . . . . . . 20  |-  seq 1
(  +  ,  ( NN  X.  { 0 } ) )  =  ( m  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  m ) )
173164, 172eqtr3i 2491 . . . . . . . . . . . . . . . . . . 19  |-  seq 1
(  +  ,  ( n  e.  NN  |->  0 ) )  =  ( m  e.  NN  |->  (  seq 1 (  +  ,  ( NN  X.  { 0 } ) ) `  m ) )
174 fconstmpt 5035 . . . . . . . . . . . . . . . . . . 19  |-  ( NN 
X.  { 0 } )  =  ( m  e.  NN  |->  0 )
175161, 173, 1743eqtr4i 2499 . . . . . . . . . . . . . . . . . 18  |-  seq 1
(  +  ,  ( n  e.  NN  |->  0 ) )  =  ( NN  X.  { 0 } )
176175rneqi 5220 . . . . . . . . . . . . . . . . 17  |-  ran  seq 1 (  +  , 
( n  e.  NN  |->  0 ) )  =  ran  ( NN  X.  { 0 } )
177 1nn 10536 . . . . . . . . . . . . . . . . . 18  |-  1  e.  NN
178 ne0i 3784 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
179 rnxp 5428 . . . . . . . . . . . . . . . . . 18  |-  ( NN  =/=  (/)  ->  ran  ( NN 
X.  { 0 } )  =  { 0 } )
180177, 178, 179mp2b 10 . . . . . . . . . . . . . . . . 17  |-  ran  ( NN  X.  { 0 } )  =  { 0 }
181176, 180eqtri 2489 . . . . . . . . . . . . . . . 16  |-  ran  seq 1 (  +  , 
( n  e.  NN  |->  0 ) )  =  { 0 }
182181supeq1i 7896 . . . . . . . . . . . . . . 15  |-  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  0 ) ) ,  RR* ,  <  )  =  sup ( { 0 } ,  RR* ,  <  )
183 xrltso 11336 . . . . . . . . . . . . . . . 16  |-  <  Or  RR*
184 0xr 9629 . . . . . . . . . . . . . . . 16  |-  0  e.  RR*
185 supsn 7919 . . . . . . . . . . . . . . . 16  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
186183, 184, 185mp2an 672 . . . . . . . . . . . . . . 15  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
187182, 186eqtri 2489 . . . . . . . . . . . . . 14  |-  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  0 ) ) ,  RR* ,  <  )  =  0
188154, 187syl6eq 2517 . . . . . . . . . . . . 13  |-  ( A. m  e.  NN  (
( g `  m
)  C_  RR  /\  ( vol* `  ( g `
 m ) )  =  0 )  ->  sup ( ran  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  ( ( g `  n ) 
\  U_ l  e.  ( 1..^ n ) ( g `  l ) ) ) ) ) ,  RR* ,  <  )  =  0 )
189188adantl 466 . . . . . . . . . . . 12  |-  ( ( g : NN -onto-> A  /\  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) )  ->  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  ( ( g `  n )  \  U_ l  e.  ( 1..^ n ) ( g `
 l ) ) ) ) ) , 
RR* ,  <  )  =  0 )
190125, 134, 1893eqtr3rd 2510 . . . . . . . . . . 11  |-  ( ( g : NN -onto-> A  /\  A. m  e.  NN  ( ( g `  m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 ) )  ->  0  =  ( vol `  U. A ) )
191190ex 434 . . . . . . . . . 10  |-  ( g : NN -onto-> A  -> 
( A. m  e.  NN  ( ( g `
 m )  C_  RR  /\  ( vol* `  ( g `  m
) )  =  0 )  ->  0  =  ( vol `  U. A
) ) )
19239, 191sylbid 215 . . . . . . . . 9  |-  ( g : NN -onto-> A  -> 
( A. x  e.  A  ( x  C_  RR  /\  ( vol* `  x )  =  0 )  ->  0  =  ( vol `  U. A
) ) )
19328, 192syl5 32 . . . . . . . 8  |-  ( g : NN -onto-> A  -> 
( ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR )  ->  0  =  ( vol `  U. A ) ) )
194193exlimiv 1693 . . . . . . 7  |-  ( E. g  g : NN -onto-> A  ->  ( ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR )  ->  0  =  ( vol `  U. A ) ) )
19518, 194syl 16 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  ~<_  NN )  ->  ( ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR )  ->  0  =  ( vol `  U. A ) ) )
196195expimpd 603 . . . . 5  |-  ( A  =/=  (/)  ->  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol `  U. A ) ) )
19711, 196pm2.61ine 2773 . . . 4  |-  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  -> 
0  =  ( vol `  U. A ) )
198 renepnf 9630 . . . . . . 7  |-  ( 0  e.  RR  ->  0  =/= +oo )
19948, 198mp1i 12 . . . . . 6  |-  ( U. A  =  RR  ->  0  =/= +oo )
200 fveq2 5857 . . . . . . 7  |-  ( U. A  =  RR  ->  ( vol `  U. A
)  =  ( vol `  RR ) )
201 rembl 21679 . . . . . . . . 9  |-  RR  e.  dom  vol
202 mblvol 21669 . . . . . . . . 9  |-  ( RR  e.  dom  vol  ->  ( vol `  RR )  =  ( vol* `  RR ) )
203201, 202ax-mp 5 . . . . . . . 8  |-  ( vol `  RR )  =  ( vol* `  RR )
204 ovolre 21664 . . . . . . . 8  |-  ( vol* `  RR )  = +oo
205203, 204eqtri 2489 . . . . . . 7  |-  ( vol `  RR )  = +oo
206200, 205syl6eq 2517 . . . . . 6  |-  ( U. A  =  RR  ->  ( vol `  U. A
)  = +oo )
207199, 206neeqtrrd 2760 . . . . 5  |-  ( U. A  =  RR  ->  0  =/=  ( vol `  U. A ) )
208207necon2i 2703 . . . 4  |-  ( 0  =  ( vol `  U. A )  ->  U. A  =/=  RR )
209197, 208syl 16 . . 3  |-  ( ( A  ~<_  NN  /\  ( A. x  e.  A  x  ~<_  NN  /\  U. A  C_  RR ) )  ->  U. A  =/=  RR )
210209expr 615 . 2  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  ( U. A  C_  RR  ->  U. A  =/= 
RR ) )
211 eqimss 3549 . . 3  |-  ( U. A  =  RR  ->  U. A  C_  RR )
212211necon3bi 2689 . 2  |-  ( -. 
U. A  C_  RR  ->  U. A  =/=  RR )
213210, 212pm2.61d1 159 1  |-  ( ( A  ~<_  NN  /\  A. x  e.  A  x  ~<_  NN )  ->  U. A  =/=  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655   A.wral 2807   _Vcvv 3106    \ cdif 3466    C_ wss 3469   (/)c0 3778   {csn 4020   U.cuni 4238   U_ciun 4318  Disj wdisj 4410   class class class wbr 4440    |-> cmpt 4498    Or wor 4792    X. cxp 4990   dom cdm 4992   ran crn 4993   "cima 4995   Fun wfun 5573    Fn wfn 5574   -onto->wfo 5577   ` cfv 5579  (class class class)co 6275    ~<_ cdom 7504    ~< csdm 7505   supcsup 7889   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   +oocpnf 9614   RR*cxr 9616    < clt 9617   NNcn 10525   ZZcz 10853   ZZ>=cuz 11071  ..^cfzo 11781    seqcseq 12063   vol*covol 21602   volcvol 21603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-rest 14667  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-top 19159  df-bases 19161  df-topon 19162  df-cmp 19646  df-ovol 21604  df-vol 21605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator