MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem2 Structured version   Unicode version

Theorem voliunlem2 21696
Description: Lemma for voliun 21699. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3  |-  ( ph  ->  F : NN --> dom  vol )
voliunlem.5  |-  ( ph  -> Disj  i  e.  NN  ( F `  i )
)
voliunlem.6  |-  H  =  ( n  e.  NN  |->  ( vol* `  (
x  i^i  ( F `  n ) ) ) )
Assertion
Ref Expression
voliunlem2  |-  ( ph  ->  U. ran  F  e. 
dom  vol )
Distinct variable groups:    i, n, x, F    ph, n, x
Allowed substitution hints:    ph( i)    H( x, i, n)

Proof of Theorem voliunlem2
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . . 5  |-  ( ph  ->  F : NN --> dom  vol )
2 frn 5735 . . . . 5  |-  ( F : NN --> dom  vol  ->  ran  F  C_  dom  vol )
31, 2syl 16 . . . 4  |-  ( ph  ->  ran  F  C_  dom  vol )
4 mblss 21677 . . . . . 6  |-  ( x  e.  dom  vol  ->  x 
C_  RR )
5 selpw 4017 . . . . . 6  |-  ( x  e.  ~P RR  <->  x  C_  RR )
64, 5sylibr 212 . . . . 5  |-  ( x  e.  dom  vol  ->  x  e.  ~P RR )
76ssriv 3508 . . . 4  |-  dom  vol  C_ 
~P RR
83, 7syl6ss 3516 . . 3  |-  ( ph  ->  ran  F  C_  ~P RR )
9 sspwuni 4411 . . 3  |-  ( ran 
F  C_  ~P RR  <->  U.
ran  F  C_  RR )
108, 9sylib 196 . 2  |-  ( ph  ->  U. ran  F  C_  RR )
11 elpwi 4019 . . . 4  |-  ( x  e.  ~P RR  ->  x 
C_  RR )
12 inundif 3905 . . . . . . . 8  |-  ( ( x  i^i  U. ran  F )  u.  ( x 
\  U. ran  F ) )  =  x
1312fveq2i 5867 . . . . . . 7  |-  ( vol* `  ( (
x  i^i  U. ran  F
)  u.  ( x 
\  U. ran  F ) ) )  =  ( vol* `  x
)
14 inss1 3718 . . . . . . . . 9  |-  ( x  i^i  U. ran  F
)  C_  x
15 simp2 997 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  x  C_  RR )
1614, 15syl5ss 3515 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  i^i  U. ran  F )  C_  RR )
17 ovolsscl 21632 . . . . . . . . . 10  |-  ( ( ( x  i^i  U. ran  F )  C_  x  /\  x  C_  RR  /\  ( vol* `  x
)  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )
1814, 17mp3an1 1311 . . . . . . . . 9  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )
19183adant1 1014 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )
20 difss 3631 . . . . . . . . 9  |-  ( x 
\  U. ran  F ) 
C_  x
2120, 15syl5ss 3515 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  \  U. ran  F )  C_  RR )
22 ovolsscl 21632 . . . . . . . . . 10  |-  ( ( ( x  \  U. ran  F )  C_  x  /\  x  C_  RR  /\  ( vol* `  x
)  e.  RR )  ->  ( vol* `  ( x  \  U. ran  F ) )  e.  RR )
2320, 22mp3an1 1311 . . . . . . . . 9  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  \  U. ran  F ) )  e.  RR )
24233adant1 1014 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  \  U. ran  F ) )  e.  RR )
25 ovolun 21645 . . . . . . . 8  |-  ( ( ( ( x  i^i  U. ran  F )  C_  RR  /\  ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR )  /\  (
( x  \  U. ran  F )  C_  RR  /\  ( vol* `  ( x  \  U. ran  F ) )  e.  RR ) )  ->  ( vol* `  ( ( x  i^i  U. ran  F )  u.  ( x 
\  U. ran  F ) ) )  <_  (
( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) )
2616, 19, 21, 24, 25syl22anc 1229 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( ( x  i^i  U. ran  F )  u.  ( x  \  U. ran  F ) ) )  <_  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) ) )
2713, 26syl5eqbrr 4481 . . . . . 6  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  <_  (
( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) )
2819rexrd 9639 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  e. 
RR* )
29 nnuz 11113 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
30 1zzd 10891 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  1  e.  ZZ )
31 fveq2 5864 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3231ineq2d 3700 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  (
x  i^i  ( F `  n ) )  =  ( x  i^i  ( F `  k )
) )
3332fveq2d 5868 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( vol* `  ( x  i^i  ( F `  n ) ) )  =  ( vol* `  ( x  i^i  ( F `  k )
) ) )
34 voliunlem.6 . . . . . . . . . . . . . . 15  |-  H  =  ( n  e.  NN  |->  ( vol* `  (
x  i^i  ( F `  n ) ) ) )
35 fvex 5874 . . . . . . . . . . . . . . 15  |-  ( vol* `  ( x  i^i  ( F `  k
) ) )  e. 
_V
3633, 34, 35fvmpt 5948 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  ( H `  k )  =  ( vol* `  ( x  i^i  ( F `  k )
) ) )
3736adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( H `  k )  =  ( vol* `  ( x  i^i  ( F `  k )
) ) )
38 inss1 3718 . . . . . . . . . . . . . . . 16  |-  ( x  i^i  ( F `  k ) )  C_  x
39 ovolsscl 21632 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  i^i  ( F `  k )
)  C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  k )
) )  e.  RR )
4038, 39mp3an1 1311 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  k )
) )  e.  RR )
41403adant1 1014 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  ( F `  k )
) )  e.  RR )
4241adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( vol* `  ( x  i^i  ( F `  k ) ) )  e.  RR )
4337, 42eqeltrd 2555 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( H `  k )  e.  RR )
4429, 30, 43serfre 12100 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  seq 1 (  +  ,  H ) : NN --> RR )
45 frn 5735 . . . . . . . . . . 11  |-  (  seq 1 (  +  ,  H ) : NN --> RR  ->  ran  seq 1
(  +  ,  H
)  C_  RR )
4644, 45syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ran  seq 1
(  +  ,  H
)  C_  RR )
47 ressxr 9633 . . . . . . . . . 10  |-  RR  C_  RR*
4846, 47syl6ss 3516 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ran  seq 1
(  +  ,  H
)  C_  RR* )
49 supxrcl 11502 . . . . . . . . 9  |-  ( ran 
seq 1 (  +  ,  H )  C_  RR* 
->  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )  e.  RR* )
5048, 49syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )  e.  RR* )
51 simp3 998 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  e.  RR )
5251, 24resubcld 9983 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  e.  RR )
5352rexrd 9639 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  e.  RR* )
54 iunin2 4389 . . . . . . . . . . 11  |-  U_ n  e.  NN  ( x  i^i  ( F `  n
) )  =  ( x  i^i  U_ n  e.  NN  ( F `  n ) )
55 ffn 5729 . . . . . . . . . . . . . 14  |-  ( F : NN --> dom  vol  ->  F  Fn  NN )
56 fniunfv 6145 . . . . . . . . . . . . . 14  |-  ( F  Fn  NN  ->  U_ n  e.  NN  ( F `  n )  =  U. ran  F )
571, 55, 563syl 20 . . . . . . . . . . . . 13  |-  ( ph  ->  U_ n  e.  NN  ( F `  n )  =  U. ran  F
)
58573ad2ant1 1017 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  U_ n  e.  NN  ( F `  n )  =  U. ran  F
)
5958ineq2d 3700 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  i^i  U_ n  e.  NN  ( F `  n ) )  =  ( x  i^i  U. ran  F
) )
6054, 59syl5eq 2520 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  U_ n  e.  NN  ( x  i^i  ( F `  n )
)  =  ( x  i^i  U. ran  F
) )
6160fveq2d 5868 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  U_ n  e.  NN  ( x  i^i  ( F `  n )
) )  =  ( vol* `  (
x  i^i  U. ran  F
) ) )
62 eqid 2467 . . . . . . . . . 10  |-  seq 1
(  +  ,  H
)  =  seq 1
(  +  ,  H
)
63 inss1 3718 . . . . . . . . . . . 12  |-  ( x  i^i  ( F `  n ) )  C_  x
6463, 15syl5ss 3515 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( x  i^i  ( F `  n
) )  C_  RR )
6564adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  n  e.  NN )  ->  (
x  i^i  ( F `  n ) )  C_  RR )
66 ovolsscl 21632 . . . . . . . . . . . . 13  |-  ( ( ( x  i^i  ( F `  n )
)  C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  n )
) )  e.  RR )
6763, 66mp3an1 1311 . . . . . . . . . . . 12  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( F `  n )
) )  e.  RR )
68673adant1 1014 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  ( F `  n )
) )  e.  RR )
6968adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  n  e.  NN )  ->  ( vol* `  ( x  i^i  ( F `  n ) ) )  e.  RR )
7062, 34, 65, 69ovoliun 21651 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  U_ n  e.  NN  ( x  i^i  ( F `  n )
) )  <_  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )
)
7161, 70eqbrtrrd 4469 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  <_  sup ( ran  seq 1
(  +  ,  H
) ,  RR* ,  <  ) )
7213ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  F : NN --> dom  vol )
73 voliunlem.5 . . . . . . . . . . . . . 14  |-  ( ph  -> Disj  i  e.  NN  ( F `  i )
)
74733ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> Disj  i  e.  NN  ( F `  i )
)
7572, 74, 34, 15, 51voliunlem1 21695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (
(  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x ) )
7644ffvelrnda 6019 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  k
)  e.  RR )
7724adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( vol* `  ( x 
\  U. ran  F ) )  e.  RR )
78 simpl3 1001 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  ( vol* `  x )  e.  RR )
79 leaddsub 10024 . . . . . . . . . . . . 13  |-  ( ( (  seq 1 (  +  ,  H ) `
 k )  e.  RR  /\  ( vol* `  ( x  \ 
U. ran  F )
)  e.  RR  /\  ( vol* `  x
)  e.  RR )  ->  ( ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x )  <->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8076, 77, 78, 79syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (
( (  seq 1
(  +  ,  H
) `  k )  +  ( vol* `  ( x  \  U. ran  F ) ) )  <_  ( vol* `  x )  <->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8175, 80mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) )
8281ralrimiva 2878 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  A. k  e.  NN  (  seq 1 (  +  ,  H ) `  k )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
83 ffn 5729 . . . . . . . . . . 11  |-  (  seq 1 (  +  ,  H ) : NN --> RR  ->  seq 1 (  +  ,  H )  Fn  NN )
84 breq1 4450 . . . . . . . . . . . 12  |-  ( z  =  (  seq 1
(  +  ,  H
) `  k )  ->  ( z  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) )  <->  (  seq 1 (  +  ,  H ) `  k
)  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8584ralrn 6022 . . . . . . . . . . 11  |-  (  seq 1 (  +  ,  H )  Fn  NN  ->  ( A. z  e. 
ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  <->  A. k  e.  NN  (  seq 1 (  +  ,  H ) `  k )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) ) )
8644, 83, 853syl 20 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( A. z  e.  ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) )  <->  A. k  e.  NN  (  seq 1 (  +  ,  H ) `  k )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) ) )
8782, 86mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  A. z  e.  ran  seq 1 (  +  ,  H ) z  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
88 supxrleub 11514 . . . . . . . . . 10  |-  ( ( ran  seq 1 (  +  ,  H ) 
C_  RR*  /\  ( ( vol* `  x
)  -  ( vol* `  ( x  \ 
U. ran  F )
) )  e.  RR* )  ->  ( sup ( ran  seq 1 (  +  ,  H ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) )  <->  A. z  e.  ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
8948, 53, 88syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( sup ( ran  seq 1 (  +  ,  H ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) )  <->  A. z  e.  ran  seq 1 (  +  ,  H ) z  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9087, 89mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  sup ( ran  seq 1 (  +  ,  H ) ,  RR* ,  <  )  <_  (
( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
9128, 50, 53, 71, 90xrletrd 11361 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  U. ran  F ) )  <_ 
( ( vol* `  x )  -  ( vol* `  ( x 
\  U. ran  F ) ) ) )
92 leaddsub 10024 . . . . . . . 8  |-  ( ( ( vol* `  ( x  i^i  U. ran  F ) )  e.  RR  /\  ( vol* `  ( x  \  U. ran  F ) )  e.  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( ( vol* `  (
x  i^i  U. ran  F
) )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x )  <->  ( vol* `  ( x  i^i  U. ran  F ) )  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9319, 24, 51, 92syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( ( vol* `  (
x  i^i  U. ran  F
) )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x )  <->  ( vol* `  ( x  i^i  U. ran  F ) )  <_  ( ( vol* `  x )  -  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9491, 93mpbird 232 . . . . . 6  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  <_  ( vol* `  x ) )
9519, 24readdcld 9619 . . . . . . 7  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  e.  RR )
9651, 95letri3d 9722 . . . . . 6  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  <->  ( ( vol* `  x )  <_  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \ 
U. ran  F )
) )  /\  (
( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) )  <_ 
( vol* `  x ) ) ) )
9727, 94, 96mpbir2and 920 . . . . 5  |-  ( (
ph  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) )
98973expia 1198 . . . 4  |-  ( (
ph  /\  x  C_  RR )  ->  ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  ( x  \  U. ran  F ) ) ) ) )
9911, 98sylan2 474 . . 3  |-  ( (
ph  /\  x  e.  ~P RR )  ->  (
( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) ) )
10099ralrimiva 2878 . 2  |-  ( ph  ->  A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) ) )
101 ismbl 21672 . 2  |-  ( U. ran  F  e.  dom  vol  <->  ( U. ran  F  C_  RR  /\ 
A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  U. ran  F ) )  +  ( vol* `  (
x  \  U. ran  F
) ) ) ) ) )
10210, 100, 101sylanbrc 664 1  |-  ( ph  ->  U. ran  F  e. 
dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   U_ciun 4325  Disj wdisj 4417   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ran crn 5000    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   supcsup 7896   RRcr 9487   1c1 9489    + caddc 9491   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801   NNcn 10532    seqcseq 12071   vol*covol 21609   volcvol 21610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cc 8811  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-sum 13468  df-ovol 21611  df-vol 21612
This theorem is referenced by:  voliunlem3  21697  iunmbl  21698
  Copyright terms: Public domain W3C validator