MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem1 Structured version   Visualization version   Unicode version

Theorem voliunlem1 22503
Description: Lemma for voliun 22507. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3  |-  ( ph  ->  F : NN --> dom  vol )
voliunlem.5  |-  ( ph  -> Disj  i  e.  NN  ( F `  i )
)
voliunlem1.6  |-  H  =  ( n  e.  NN  |->  ( vol* `  ( E  i^i  ( F `  n ) ) ) )
voliunlem1.7  |-  ( ph  ->  E  C_  RR )
voliunlem1.8  |-  ( ph  ->  ( vol* `  E )  e.  RR )
Assertion
Ref Expression
voliunlem1  |-  ( (
ph  /\  k  e.  NN )  ->  ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  ( E  \  U. ran  F
) ) )  <_ 
( vol* `  E ) )
Distinct variable groups:    k, n, E    i, k, n, F   
k, H    ph, k, n
Allowed substitution hints:    ph( i)    E( i)    H( i, n)

Proof of Theorem voliunlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 voliunlem1.7 . . . . 5  |-  ( ph  ->  E  C_  RR )
21adantr 467 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  E  C_  RR )
3 voliunlem1.8 . . . . 5  |-  ( ph  ->  ( vol* `  E )  e.  RR )
43adantr 467 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  E )  e.  RR )
5 difss 3560 . . . . 5  |-  ( E 
\  U. ran  F ) 
C_  E
6 ovolsscl 22439 . . . . 5  |-  ( ( ( E  \  U. ran  F )  C_  E  /\  E  C_  RR  /\  ( vol* `  E
)  e.  RR )  ->  ( vol* `  ( E  \  U. ran  F ) )  e.  RR )
75, 6mp3an1 1351 . . . 4  |-  ( ( E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  \  U. ran  F ) )  e.  RR )
82, 4, 7syl2anc 667 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  \ 
U. ran  F )
)  e.  RR )
9 difss 3560 . . . . 5  |-  ( E 
\  U_ n  e.  ( 1 ... k ) ( F `  n
) )  C_  E
10 ovolsscl 22439 . . . . 5  |-  ( ( ( E  \  U_ n  e.  ( 1 ... k ) ( F `  n ) )  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  \  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  e.  RR )
119, 10mp3an1 1351 . . . 4  |-  ( ( E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  \  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  e.  RR )
122, 4, 11syl2anc 667 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  \ 
U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  e.  RR )
13 inss1 3652 . . . . 5  |-  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) )  C_  E
14 ovolsscl 22439 . . . . 5  |-  ( ( ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) )  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  e.  RR )
1513, 14mp3an1 1351 . . . 4  |-  ( ( E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  e.  RR )
162, 4, 15syl2anc 667 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  e.  RR )
17 elfznn 11828 . . . . . . . . 9  |-  ( n  e.  ( 1 ... k )  ->  n  e.  NN )
18 voliunlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : NN --> dom  vol )
19 ffn 5728 . . . . . . . . . . . 12  |-  ( F : NN --> dom  vol  ->  F  Fn  NN )
2018, 19syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  NN )
21 fnfvelrn 6019 . . . . . . . . . . 11  |-  ( ( F  Fn  NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  ran  F
)
2220, 21sylan 474 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. 
ran  F )
23 elssuni 4227 . . . . . . . . . 10  |-  ( ( F `  n )  e.  ran  F  -> 
( F `  n
)  C_  U. ran  F
)
2422, 23syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  C_  U.
ran  F )
2517, 24sylan2 477 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... k
) )  ->  ( F `  n )  C_ 
U. ran  F )
2625ralrimiva 2802 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( 1 ... k ) ( F `  n
)  C_  U. ran  F
)
2726adantr 467 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A. n  e.  ( 1 ... k
) ( F `  n )  C_  U. ran  F )
28 iunss 4319 . . . . . 6  |-  ( U_ n  e.  ( 1 ... k ) ( F `  n ) 
C_  U. ran  F  <->  A. n  e.  ( 1 ... k
) ( F `  n )  C_  U. ran  F )
2927, 28sylibr 216 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  U_ n  e.  ( 1 ... k
) ( F `  n )  C_  U. ran  F )
3029sscond 3570 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( E 
\  U. ran  F ) 
C_  ( E  \  U_ n  e.  (
1 ... k ) ( F `  n ) ) )
319, 2syl5ss 3443 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( E 
\  U_ n  e.  ( 1 ... k ) ( F `  n
) )  C_  RR )
32 ovolss 22438 . . . 4  |-  ( ( ( E  \  U. ran  F )  C_  ( E  \  U_ n  e.  ( 1 ... k
) ( F `  n ) )  /\  ( E  \  U_ n  e.  ( 1 ... k
) ( F `  n ) )  C_  RR )  ->  ( vol* `  ( E  \ 
U. ran  F )
)  <_  ( vol* `  ( E  \  U_ n  e.  (
1 ... k ) ( F `  n ) ) ) )
3330, 31, 32syl2anc 667 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  \ 
U. ran  F )
)  <_  ( vol* `  ( E  \  U_ n  e.  (
1 ... k ) ( F `  n ) ) ) )
348, 12, 16, 33leadd2dd 10228 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  +  ( vol* `  ( E  \  U. ran  F ) ) )  <_ 
( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  +  ( vol* `  ( E  \  U_ n  e.  ( 1 ... k
) ( F `  n ) ) ) ) )
35 oveq2 6298 . . . . . . . . . . 11  |-  ( z  =  1  ->  (
1 ... z )  =  ( 1 ... 1
) )
3635iuneq1d 4303 . . . . . . . . . 10  |-  ( z  =  1  ->  U_ n  e.  ( 1 ... z
) ( F `  n )  =  U_ n  e.  ( 1 ... 1 ) ( F `  n ) )
3736eleq1d 2513 . . . . . . . . 9  |-  ( z  =  1  ->  ( U_ n  e.  (
1 ... z ) ( F `  n )  e.  dom  vol  <->  U_ n  e.  ( 1 ... 1
) ( F `  n )  e.  dom  vol ) )
3836ineq2d 3634 . . . . . . . . . . 11  |-  ( z  =  1  ->  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) )  =  ( E  i^i  U_ n  e.  ( 1 ... 1
) ( F `  n ) ) )
3938fveq2d 5869 . . . . . . . . . 10  |-  ( z  =  1  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) ) )  =  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1
) ( F `  n ) ) ) )
40 fveq2 5865 . . . . . . . . . 10  |-  ( z  =  1  ->  (  seq 1 (  +  ,  H ) `  z
)  =  (  seq 1 (  +  ,  H ) `  1
) )
4139, 40eqeq12d 2466 . . . . . . . . 9  |-  ( z  =  1  ->  (
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  z )  <->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1 ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 1 ) ) )
4237, 41anbi12d 717 . . . . . . . 8  |-  ( z  =  1  ->  (
( U_ n  e.  ( 1 ... z ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  z )
)  <->  ( U_ n  e.  ( 1 ... 1
) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1 ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) ` 
1 ) ) ) )
4342imbi2d 318 . . . . . . 7  |-  ( z  =  1  ->  (
( ph  ->  ( U_ n  e.  ( 1 ... z ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 z ) ) )  <->  ( ph  ->  (
U_ n  e.  ( 1 ... 1 ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  1 )
) ) ) )
44 oveq2 6298 . . . . . . . . . . 11  |-  ( z  =  k  ->  (
1 ... z )  =  ( 1 ... k
) )
4544iuneq1d 4303 . . . . . . . . . 10  |-  ( z  =  k  ->  U_ n  e.  ( 1 ... z
) ( F `  n )  =  U_ n  e.  ( 1 ... k ) ( F `  n ) )
4645eleq1d 2513 . . . . . . . . 9  |-  ( z  =  k  ->  ( U_ n  e.  (
1 ... z ) ( F `  n )  e.  dom  vol  <->  U_ n  e.  ( 1 ... k
) ( F `  n )  e.  dom  vol ) )
4745ineq2d 3634 . . . . . . . . . . 11  |-  ( z  =  k  ->  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) )  =  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )
4847fveq2d 5869 . . . . . . . . . 10  |-  ( z  =  k  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) ) )  =  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) ) )
49 fveq2 5865 . . . . . . . . . 10  |-  ( z  =  k  ->  (  seq 1 (  +  ,  H ) `  z
)  =  (  seq 1 (  +  ,  H ) `  k
) )
5048, 49eqeq12d 2466 . . . . . . . . 9  |-  ( z  =  k  ->  (
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  z )  <->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k ) ) )
5146, 50anbi12d 717 . . . . . . . 8  |-  ( z  =  k  ->  (
( U_ n  e.  ( 1 ... z ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  z )
)  <->  ( U_ n  e.  ( 1 ... k
) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) `  k ) ) ) )
5251imbi2d 318 . . . . . . 7  |-  ( z  =  k  ->  (
( ph  ->  ( U_ n  e.  ( 1 ... z ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 z ) ) )  <->  ( ph  ->  (
U_ n  e.  ( 1 ... k ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  k )
) ) ) )
53 oveq2 6298 . . . . . . . . . . 11  |-  ( z  =  ( k  +  1 )  ->  (
1 ... z )  =  ( 1 ... (
k  +  1 ) ) )
5453iuneq1d 4303 . . . . . . . . . 10  |-  ( z  =  ( k  +  1 )  ->  U_ n  e.  ( 1 ... z
) ( F `  n )  =  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )
5554eleq1d 2513 . . . . . . . . 9  |-  ( z  =  ( k  +  1 )  ->  ( U_ n  e.  (
1 ... z ) ( F `  n )  e.  dom  vol  <->  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  e.  dom  vol ) )
5654ineq2d 3634 . . . . . . . . . . 11  |-  ( z  =  ( k  +  1 )  ->  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) )  =  ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) ) )
5756fveq2d 5869 . . . . . . . . . 10  |-  ( z  =  ( k  +  1 )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) ) )  =  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) ) ) )
58 fveq2 5865 . . . . . . . . . 10  |-  ( z  =  ( k  +  1 )  ->  (  seq 1 (  +  ,  H ) `  z
)  =  (  seq 1 (  +  ,  H ) `  (
k  +  1 ) ) )
5957, 58eqeq12d 2466 . . . . . . . . 9  |-  ( z  =  ( k  +  1 )  ->  (
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  z )  <->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 ( k  +  1 ) ) ) )
6055, 59anbi12d 717 . . . . . . . 8  |-  ( z  =  ( k  +  1 )  ->  (
( U_ n  e.  ( 1 ... z ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  z )
)  <->  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) `  ( k  +  1 ) ) ) ) )
6160imbi2d 318 . . . . . . 7  |-  ( z  =  ( k  +  1 )  ->  (
( ph  ->  ( U_ n  e.  ( 1 ... z ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... z ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 z ) ) )  <->  ( ph  ->  (
U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  ( k  +  1 ) ) ) ) ) )
62 1z 10967 . . . . . . . . . . 11  |-  1  e.  ZZ
63 fzsn 11840 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
64 iuneq1 4292 . . . . . . . . . . 11  |-  ( ( 1 ... 1 )  =  { 1 }  ->  U_ n  e.  ( 1 ... 1 ) ( F `  n
)  =  U_ n  e.  { 1 }  ( F `  n )
)
6562, 63, 64mp2b 10 . . . . . . . . . 10  |-  U_ n  e.  ( 1 ... 1
) ( F `  n )  =  U_ n  e.  { 1 }  ( F `  n )
66 1ex 9638 . . . . . . . . . . 11  |-  1  e.  _V
67 fveq2 5865 . . . . . . . . . . 11  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
6866, 67iunxsn 4361 . . . . . . . . . 10  |-  U_ n  e.  { 1 }  ( F `  n )  =  ( F ` 
1 )
6965, 68eqtri 2473 . . . . . . . . 9  |-  U_ n  e.  ( 1 ... 1
) ( F `  n )  =  ( F `  1 )
70 1nn 10620 . . . . . . . . . 10  |-  1  e.  NN
71 ffvelrn 6020 . . . . . . . . . 10  |-  ( ( F : NN --> dom  vol  /\  1  e.  NN )  ->  ( F ` 
1 )  e.  dom  vol )
7218, 70, 71sylancl 668 . . . . . . . . 9  |-  ( ph  ->  ( F `  1
)  e.  dom  vol )
7369, 72syl5eqel 2533 . . . . . . . 8  |-  ( ph  ->  U_ n  e.  ( 1 ... 1 ) ( F `  n
)  e.  dom  vol )
7467ineq2d 3634 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( E  i^i  ( F `  n ) )  =  ( E  i^i  ( F `  1 )
) )
7574fveq2d 5869 . . . . . . . . . . 11  |-  ( n  =  1  ->  ( vol* `  ( E  i^i  ( F `  n ) ) )  =  ( vol* `  ( E  i^i  ( F `  1 )
) ) )
76 voliunlem1.6 . . . . . . . . . . 11  |-  H  =  ( n  e.  NN  |->  ( vol* `  ( E  i^i  ( F `  n ) ) ) )
77 fvex 5875 . . . . . . . . . . 11  |-  ( vol* `  ( E  i^i  ( F `  1
) ) )  e. 
_V
7875, 76, 77fvmpt 5948 . . . . . . . . . 10  |-  ( 1  e.  NN  ->  ( H `  1 )  =  ( vol* `  ( E  i^i  ( F `  1 )
) ) )
7970, 78ax-mp 5 . . . . . . . . 9  |-  ( H `
 1 )  =  ( vol* `  ( E  i^i  ( F `  1 )
) )
80 seq1 12226 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  (  seq 1 (  +  ,  H ) `  1
)  =  ( H `
 1 ) )
8162, 80ax-mp 5 . . . . . . . . 9  |-  (  seq 1 (  +  ,  H ) `  1
)  =  ( H `
 1 )
8269ineq2i 3631 . . . . . . . . . 10  |-  ( E  i^i  U_ n  e.  ( 1 ... 1 ) ( F `  n
) )  =  ( E  i^i  ( F `
 1 ) )
8382fveq2i 5868 . . . . . . . . 9  |-  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1 ) ( F `  n
) ) )  =  ( vol* `  ( E  i^i  ( F `  1 )
) )
8479, 81, 833eqtr4ri 2484 . . . . . . . 8  |-  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1 ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 1 )
8573, 84jctir 541 . . . . . . 7  |-  ( ph  ->  ( U_ n  e.  ( 1 ... 1
) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... 1 ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) ` 
1 ) ) )
86 peano2nn 10621 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
87 ffvelrn 6020 . . . . . . . . . . . . 13  |-  ( ( F : NN --> dom  vol  /\  ( k  +  1 )  e.  NN )  ->  ( F `  ( k  +  1 ) )  e.  dom  vol )
8818, 86, 87syl2an 480 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e. 
dom  vol )
89 unmbl 22491 . . . . . . . . . . . . 13  |-  ( (
U_ n  e.  ( 1 ... k ) ( F `  n
)  e.  dom  vol  /\  ( F `  (
k  +  1 ) )  e.  dom  vol )  ->  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )  e.  dom  vol )
9089ex 436 . . . . . . . . . . . 12  |-  ( U_ n  e.  ( 1 ... k ) ( F `  n )  e.  dom  vol  ->  ( ( F `  (
k  +  1 ) )  e.  dom  vol  ->  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )  e.  dom  vol ) )
9188, 90syl5com 31 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( U_ n  e.  ( 1 ... k ) ( F `  n )  e.  dom  vol  ->  (
U_ n  e.  ( 1 ... k ) ( F `  n
)  u.  ( F `
 ( k  +  1 ) ) )  e.  dom  vol )
)
92 simpr 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
93 nnuz 11194 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
9492, 93syl6eleq 2539 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
95 fzsuc 11843 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
96 iuneq1 4292 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u. 
{ ( k  +  1 ) } )  ->  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  =  U_ n  e.  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) ( F `  n ) )
9794, 95, 963syl 18 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  =  U_ n  e.  ( (
1 ... k )  u. 
{ ( k  +  1 ) } ) ( F `  n
) )
98 iunxun 4363 . . . . . . . . . . . . . 14  |-  U_ n  e.  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) ( F `  n )  =  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  U_ n  e.  { (
k  +  1 ) }  ( F `  n ) )
99 ovex 6318 . . . . . . . . . . . . . . . 16  |-  ( k  +  1 )  e. 
_V
100 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
10199, 100iunxsn 4361 . . . . . . . . . . . . . . 15  |-  U_ n  e.  { ( k  +  1 ) }  ( F `  n )  =  ( F `  ( k  +  1 ) )
102101uneq2i 3585 . . . . . . . . . . . . . 14  |-  ( U_ n  e.  ( 1 ... k ) ( F `  n )  u.  U_ n  e. 
{ ( k  +  1 ) }  ( F `  n )
)  =  ( U_ n  e.  ( 1 ... k ) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )
10398, 102eqtri 2473 . . . . . . . . . . . . 13  |-  U_ n  e.  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) ( F `  n )  =  ( U_ n  e.  ( 1 ... k
) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )
10497, 103syl6eq 2501 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  =  (
U_ n  e.  ( 1 ... k ) ( F `  n
)  u.  ( F `
 ( k  +  1 ) ) ) )
105104eleq1d 2513 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n )  e.  dom  vol  <->  ( U_ n  e.  ( 1 ... k ) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )  e. 
dom  vol ) )
10691, 105sylibrd 238 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( U_ n  e.  ( 1 ... k ) ( F `  n )  e.  dom  vol  ->  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n )  e.  dom  vol )
)
107 oveq1 6297 . . . . . . . . . . 11  |-  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k )  -> 
( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) )  =  ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) ) )
108 inss1 3652 . . . . . . . . . . . . . . 15  |-  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  C_  E
109108, 2syl5ss 3443 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  C_  RR )
110 ovolsscl 22439 . . . . . . . . . . . . . . . 16  |-  ( ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) ) )  e.  RR )
111108, 110mp3an1 1351 . . . . . . . . . . . . . . 15  |-  ( ( E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) ) )  e.  RR )
1122, 4, 111syl2anc 667 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  e.  RR )
113 mblsplit 22486 . . . . . . . . . . . . . 14  |-  ( ( ( F `  (
k  +  1 ) )  e.  dom  vol  /\  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )  C_  RR  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  e.  RR )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  =  ( ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )  i^i  ( F `
 ( k  +  1 ) ) ) )  +  ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  \  ( F `  ( k  +  1 ) ) ) ) ) )
11488, 109, 112, 113syl3anc 1268 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  =  ( ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )  i^i  ( F `
 ( k  +  1 ) ) ) )  +  ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  \  ( F `  ( k  +  1 ) ) ) ) ) )
115 in32 3644 . . . . . . . . . . . . . . . 16  |-  ( ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) )  i^i  ( F `  (
k  +  1 ) ) )  =  ( ( E  i^i  ( F `  ( k  +  1 ) ) )  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) )
116 inss2 3653 . . . . . . . . . . . . . . . . . 18  |-  ( E  i^i  ( F `  ( k  +  1 ) ) )  C_  ( F `  ( k  +  1 ) )
11786adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
118117, 93syl6eleq 2539 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  ( ZZ>= `  1 )
)
119 eluzfz2 11807 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  +  1 )  e.  ( ZZ>= `  1
)  ->  ( k  +  1 )  e.  ( 1 ... (
k  +  1 ) ) )
120100ssiun2s 4322 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  +  1 )  e.  ( 1 ... ( k  +  1 ) )  ->  ( F `  ( k  +  1 ) ) 
C_  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )
121118, 119, 1203syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  C_  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )
122116, 121syl5ss 3443 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( E  i^i  ( F `  ( k  +  1 ) ) )  C_  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )
123 df-ss 3418 . . . . . . . . . . . . . . . . 17  |-  ( ( E  i^i  ( F `
 ( k  +  1 ) ) ) 
C_  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  <->  ( ( E  i^i  ( F `  ( k  +  1 ) ) )  i^i  U_ n  e.  (
1 ... ( k  +  1 ) ) ( F `  n ) )  =  ( E  i^i  ( F `  ( k  +  1 ) ) ) )
124122, 123sylib 200 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( E  i^i  ( F `
 ( k  +  1 ) ) )  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  =  ( E  i^i  ( F `
 ( k  +  1 ) ) ) )
125115, 124syl5eq 2497 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) )  i^i  ( F `  (
k  +  1 ) ) )  =  ( E  i^i  ( F `
 ( k  +  1 ) ) ) )
126125fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  i^i  ( F `  ( k  +  1 ) ) ) )  =  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) )
127 indif2 3686 . . . . . . . . . . . . . . . 16  |-  ( E  i^i  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  \  ( F `  ( k  +  1 ) ) ) )  =  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )  \  ( F `
 ( k  +  1 ) ) )
128 uncom 3578 . . . . . . . . . . . . . . . . . . 19  |-  ( U_ n  e.  ( 1 ... k ) ( F `  n )  u.  ( F `  ( k  +  1 ) ) )  =  ( ( F `  ( k  +  1 ) )  u.  U_ n  e.  ( 1 ... k ) ( F `  n ) )
129104, 128syl6req 2502 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( k  +  1 ) )  u.  U_ n  e.  ( 1 ... k
) ( F `  n ) )  = 
U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )
130 voliunlem.5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  -> Disj  i  e.  NN  ( F `  i )
)
131130ad2antrr 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  -> Disj  i  e.  NN  ( F `  i ) )
132117adantr 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
k  +  1 )  e.  NN )
13317adantl 468 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  NN )
134133nnred 10624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  e.  RR )
135 elfzle2 11803 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ( 1 ... k )  ->  n  <_  k )
136135adantl 468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  <_  k )
13792adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  k  e.  NN )
138 nnleltp1 10991 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( n  e.  NN  /\  k  e.  NN )  ->  ( n  <_  k  <->  n  <  ( k  +  1 ) ) )
139133, 137, 138syl2anc 667 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
n  <_  k  <->  n  <  ( k  +  1 ) ) )
140136, 139mpbid 214 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  n  <  ( k  +  1 ) )
141134, 140gtned 9770 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
k  +  1 )  =/=  n )
142 fveq2 5865 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  ( k  +  1 )  ->  ( F `  i )  =  ( F `  ( k  +  1 ) ) )
143 fveq2 5865 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  n  ->  ( F `  i )  =  ( F `  n ) )
144142, 143disji2 4389 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (Disj  i  e.  NN  ( F `  i )  /\  ( ( k  +  1 )  e.  NN  /\  n  e.  NN )  /\  ( k  +  1 )  =/=  n
)  ->  ( ( F `  ( k  +  1 ) )  i^i  ( F `  n ) )  =  (/) )
145131, 132, 133, 141, 144syl121anc 1273 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  ( 1 ... k
) )  ->  (
( F `  (
k  +  1 ) )  i^i  ( F `
 n ) )  =  (/) )
146145iuneq2dv 4300 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  NN )  ->  U_ n  e.  ( 1 ... k
) ( ( F `
 ( k  +  1 ) )  i^i  ( F `  n
) )  =  U_ n  e.  ( 1 ... k ) (/) )
147 iunin2 4342 . . . . . . . . . . . . . . . . . . . 20  |-  U_ n  e.  ( 1 ... k
) ( ( F `
 ( k  +  1 ) )  i^i  ( F `  n
) )  =  ( ( F `  (
k  +  1 ) )  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) )
148 iun0 4334 . . . . . . . . . . . . . . . . . . . 20  |-  U_ n  e.  ( 1 ... k
) (/)  =  (/)
149146, 147, 1483eqtr3g 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( k  +  1 ) )  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) )  =  (/) )
150 uneqdifeq 3856 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F `  (
k  +  1 ) )  C_  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  /\  (
( F `  (
k  +  1 ) )  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) )  =  (/) )  ->  ( ( ( F `  (
k  +  1 ) )  u.  U_ n  e.  ( 1 ... k
) ( F `  n ) )  = 
U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  <->  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  \  ( F `  ( k  +  1 ) ) )  =  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )
151121, 149, 150syl2anc 667 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  (
k  +  1 ) )  u.  U_ n  e.  ( 1 ... k
) ( F `  n ) )  = 
U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
)  <->  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  \  ( F `  ( k  +  1 ) ) )  =  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )
152129, 151mpbid 214 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) 
\  ( F `  ( k  +  1 ) ) )  = 
U_ n  e.  ( 1 ... k ) ( F `  n
) )
153152ineq2d 3634 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( E  i^i  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  \  ( F `  ( k  +  1 ) ) ) )  =  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )
154127, 153syl5eqr 2499 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) )  \ 
( F `  (
k  +  1 ) ) )  =  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )
155154fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  \  ( F `  ( k  +  1 ) ) ) )  =  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) ) )
156126, 155oveq12d 6308 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( vol* `  (
( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) )  i^i  ( F `
 ( k  +  1 ) ) ) )  +  ( vol* `  ( ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) )  \  ( F `  ( k  +  1 ) ) ) ) )  =  ( ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) )  +  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) ) ) )
157 inss1 3652 . . . . . . . . . . . . . . . . 17  |-  ( E  i^i  ( F `  ( k  +  1 ) ) )  C_  E
158 ovolsscl 22439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( E  i^i  ( F `  ( k  +  1 ) ) )  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) )  e.  RR )
159157, 158mp3an1 1351 . . . . . . . . . . . . . . . 16  |-  ( ( E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) )  e.  RR )
1602, 4, 159syl2anc 667 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  ( F `  (
k  +  1 ) ) ) )  e.  RR )
161160recnd 9669 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  ( F `  (
k  +  1 ) ) ) )  e.  CC )
16216recnd 9669 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  e.  CC )
163161, 162addcomd 9835 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) )  +  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) ) )  =  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) ) )
164114, 156, 1633eqtrd 2489 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  =  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) ) )
165 seqp1 12228 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  1
)  ->  (  seq 1 (  +  ,  H ) `  (
k  +  1 ) )  =  ( (  seq 1 (  +  ,  H ) `  k )  +  ( H `  ( k  +  1 ) ) ) )
16694, 165syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  (
k  +  1 ) )  =  ( (  seq 1 (  +  ,  H ) `  k )  +  ( H `  ( k  +  1 ) ) ) )
167100ineq2d 3634 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( k  +  1 )  ->  ( E  i^i  ( F `  n ) )  =  ( E  i^i  ( F `  ( k  +  1 ) ) ) )
168167fveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( k  +  1 )  ->  ( vol* `  ( E  i^i  ( F `  n ) ) )  =  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) )
169 fvex 5875 . . . . . . . . . . . . . . . 16  |-  ( vol* `  ( E  i^i  ( F `  (
k  +  1 ) ) ) )  e. 
_V
170168, 76, 169fvmpt 5948 . . . . . . . . . . . . . . 15  |-  ( ( k  +  1 )  e.  NN  ->  ( H `  ( k  +  1 ) )  =  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) )
171117, 170syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 ( k  +  1 ) )  =  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) )
172171oveq2d 6306 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( (  seq 1 (  +  ,  H ) `  k )  +  ( H `  ( k  +  1 ) ) )  =  ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) ) )
173166, 172eqtrd 2485 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  (
k  +  1 ) )  =  ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) ) )
174164, 173eqeq12d 2466 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 ( k  +  1 ) )  <->  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) )  =  ( (  seq 1
(  +  ,  H
) `  k )  +  ( vol* `  ( E  i^i  ( F `  ( k  +  1 ) ) ) ) ) ) )
175107, 174syl5ibr 225 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k )  -> 
( vol* `  ( E  i^i  U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  ( k  +  1 ) ) ) )
176106, 175anim12d 566 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( (
U_ n  e.  ( 1 ... k ) ( F `  n
)  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  =  (  seq 1
(  +  ,  H
) `  k )
)  ->  ( U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 ( k  +  1 ) ) ) ) )
177176expcom 437 . . . . . . . 8  |-  ( k  e.  NN  ->  ( ph  ->  ( ( U_ n  e.  ( 1 ... k ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k ) )  ->  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) `  ( k  +  1 ) ) ) ) ) )
178177a2d 29 . . . . . . 7  |-  ( k  e.  NN  ->  (
( ph  ->  ( U_ n  e.  ( 1 ... k ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k ) ) )  ->  ( ph  ->  ( U_ n  e.  ( 1 ... (
k  +  1 ) ) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... ( k  +  1 ) ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) `  ( k  +  1 ) ) ) ) ) )
17943, 52, 61, 52, 85, 178nnind 10627 . . . . . 6  |-  ( k  e.  NN  ->  ( ph  ->  ( U_ n  e.  ( 1 ... k
) ( F `  n )  e.  dom  vol 
/\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  =  (  seq 1 (  +  ,  H ) `  k ) ) ) )
180179impcom 432 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( U_ n  e.  ( 1 ... k ) ( F `  n )  e.  dom  vol  /\  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k ) ) )
181180simprd 465 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  =  (  seq 1 (  +  ,  H ) `
 k ) )
182181eqcomd 2457 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  H ) `  k
)  =  ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) ) )
183182oveq1d 6305 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  ( E  \  U. ran  F
) ) )  =  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n ) ) )  +  ( vol* `  ( E  \  U. ran  F
) ) ) )
184180simpld 461 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  U_ n  e.  ( 1 ... k
) ( F `  n )  e.  dom  vol )
185 mblsplit 22486 . . 3  |-  ( (
U_ n  e.  ( 1 ... k ) ( F `  n
)  e.  dom  vol  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  E )  =  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k
) ( F `  n ) ) )  +  ( vol* `  ( E  \  U_ n  e.  ( 1 ... k ) ( F `  n ) ) ) ) )
186184, 2, 4, 185syl3anc 1268 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( vol* `  E )  =  ( ( vol* `  ( E  i^i  U_ n  e.  ( 1 ... k ) ( F `  n
) ) )  +  ( vol* `  ( E  \  U_ n  e.  ( 1 ... k
) ( F `  n ) ) ) ) )
18734, 183, 1863brtr4d 4433 1  |-  ( (
ph  /\  k  e.  NN )  ->  ( (  seq 1 (  +  ,  H ) `  k )  +  ( vol* `  ( E  \  U. ran  F
) ) )  <_ 
( vol* `  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   {csn 3968   U.cuni 4198   U_ciun 4278  Disj wdisj 4373   class class class wbr 4402    |-> cmpt 4461   dom cdm 4834   ran crn 4835    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   RRcr 9538   1c1 9540    + caddc 9542    < clt 9675    <_ cle 9676   NNcn 10609   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11784    seqcseq 12213   vol*covol 22413   volcvol 22415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fl 12028  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-ovol 22416  df-vol 22418
This theorem is referenced by:  voliunlem2  22504  voliunlem3  22505
  Copyright terms: Public domain W3C validator