Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliune Structured version   Unicode version

Theorem voliune 28179
Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +oo for the measure of any set in the sum. Cf. ovoliun 21894 and voliun 21942 (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
voliune  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\ Disj  n  e.  NN  A )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )

Proof of Theorem voliune
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 r19.26 2970 . . . . 5  |-  ( A. n  e.  NN  ( A  e.  dom  vol  /\  ( vol `  A )  e.  RR )  <->  ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A
)  e.  RR ) )
2 eqid 2443 . . . . . 6  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  A ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  A ) ) )
3 eqid 2443 . . . . . 6  |-  ( n  e.  NN  |->  ( vol `  A ) )  =  ( n  e.  NN  |->  ( vol `  A ) )
42, 3voliun 21942 . . . . 5  |-  ( ( A. n  e.  NN  ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\ Disj  n  e.  NN  A
)  ->  ( vol ` 
U_ n  e.  NN  A )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  )
)
51, 4sylanbr 473 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\ Disj  n  e.  NN  A )  ->  ( vol `  U_ n  e.  NN  A )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  ) )
65an32s 804 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  A. n  e.  NN  ( vol `  A
)  e.  RR )  ->  ( vol `  U_ n  e.  NN  A )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  ) )
7 nfra1 2824 . . . . . . 7  |-  F/ n A. n  e.  NN  A  e.  dom  vol
8 nfra1 2824 . . . . . . 7  |-  F/ n A. n  e.  NN  ( vol `  A )  e.  RR
97, 8nfan 1914 . . . . . 6  |-  F/ n
( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )
10 simpr 461 . . . . . . . . . 10  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  n  e.  NN )
11 rspa 2810 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  A  e.  dom  vol )
12 volf 21918 . . . . . . . . . . . 12  |-  vol : dom  vol --> ( 0 [,] +oo )
1312ffvelrni 6015 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] +oo ) )
1411, 13syl 16 . . . . . . . . . 10  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,] +oo ) )
153fvmpt2 5948 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  ( vol `  A )  e.  ( 0 [,] +oo ) )  ->  (
( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  ( vol `  A
) )
1610, 14, 15syl2anc 661 . . . . . . . . 9  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  =  ( vol `  A ) )
1716adantlr 714 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  =  ( vol `  A ) )
1817ex 434 . . . . . . 7  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  (
n  e.  NN  ->  ( ( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  ( vol `  A
) ) )
199, 18ralrimi 2843 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  A. n  e.  NN  ( ( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  ( vol `  A ) )
209, 19esumeq2d 28028 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  -> Σ* n  e.  NN ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  = Σ* n  e.  NN ( vol `  A ) )
21 simpr 461 . . . . . . . . 9  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  A. n  e.  NN  ( vol `  A
)  e.  RR )
2221r19.21bi 2812 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  RR )
2314adantlr 714 . . . . . . . . 9  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,] +oo ) )
24 0xr 9643 . . . . . . . . . . 11  |-  0  e.  RR*
25 pnfxr 11332 . . . . . . . . . . 11  |- +oo  e.  RR*
26 elicc1 11584 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
( vol `  A
)  e.  ( 0 [,] +oo )  <->  ( ( vol `  A )  e. 
RR*  /\  0  <_  ( vol `  A )  /\  ( vol `  A
)  <_ +oo )
) )
2724, 25, 26mp2an 672 . . . . . . . . . 10  |-  ( ( vol `  A )  e.  ( 0 [,] +oo )  <->  ( ( vol `  A )  e.  RR*  /\  0  <_  ( vol `  A )  /\  ( vol `  A )  <_ +oo ) )
2827simp2bi 1013 . . . . . . . . 9  |-  ( ( vol `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( vol `  A
) )
2923, 28syl 16 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  0  <_  ( vol `  A ) )
30 ltpnf 11342 . . . . . . . . 9  |-  ( ( vol `  A )  e.  RR  ->  ( vol `  A )  < +oo )
3122, 30syl 16 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  < +oo )
32 0re 9599 . . . . . . . . 9  |-  0  e.  RR
33 elico2 11599 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
( vol `  A
)  e.  ( 0 [,) +oo )  <->  ( ( vol `  A )  e.  RR  /\  0  <_ 
( vol `  A
)  /\  ( vol `  A )  < +oo ) ) )
3432, 25, 33mp2an 672 . . . . . . . 8  |-  ( ( vol `  A )  e.  ( 0 [,) +oo )  <->  ( ( vol `  A )  e.  RR  /\  0  <_  ( vol `  A )  /\  ( vol `  A )  < +oo ) )
3522, 29, 31, 34syl3anbrc 1181 . . . . . . 7  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,) +oo ) )
369, 35, 3fmptdf 6041 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  (
n  e.  NN  |->  ( vol `  A ) ) : NN --> ( 0 [,) +oo ) )
37 nfmpt1 4526 . . . . . . 7  |-  F/_ n
( n  e.  NN  |->  ( vol `  A ) )
3837esumfsupre 28055 . . . . . 6  |-  ( ( n  e.  NN  |->  ( vol `  A ) ) : NN --> ( 0 [,) +oo )  -> Σ* n  e.  NN ( ( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  )
)
3936, 38syl 16 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  -> Σ* n  e.  NN ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A
) ) ) , 
RR* ,  <  ) )
4020, 39eqtr3d 2486 . . . 4  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  -> Σ* n  e.  NN ( vol `  A )  =  sup ( ran 
seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A
) ) ) , 
RR* ,  <  ) )
4140adantlr 714 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  A. n  e.  NN  ( vol `  A
)  e.  RR )  -> Σ* n  e.  NN ( vol `  A )  =  sup ( ran 
seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A
) ) ) , 
RR* ,  <  ) )
426, 41eqtr4d 2487 . 2  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  A. n  e.  NN  ( vol `  A
)  e.  RR )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )
43 simpr 461 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. n  e.  NN  ( vol `  A )  = +oo )
44 nfv 1694 . . . . . . . . 9  |-  F/ k ( vol `  A
)  = +oo
45 nfcv 2605 . . . . . . . . . . 11  |-  F/_ n vol
46 nfcsb1v 3436 . . . . . . . . . . 11  |-  F/_ n [_ k  /  n ]_ A
4745, 46nffv 5863 . . . . . . . . . 10  |-  F/_ n
( vol `  [_ k  /  n ]_ A )
4847nfeq1 2620 . . . . . . . . 9  |-  F/ n
( vol `  [_ k  /  n ]_ A )  = +oo
49 csbeq1a 3429 . . . . . . . . . . 11  |-  ( n  =  k  ->  A  =  [_ k  /  n ]_ A )
5049fveq2d 5860 . . . . . . . . . 10  |-  ( n  =  k  ->  ( vol `  A )  =  ( vol `  [_ k  /  n ]_ A ) )
5150eqeq1d 2445 . . . . . . . . 9  |-  ( n  =  k  ->  (
( vol `  A
)  = +oo  <->  ( vol ` 
[_ k  /  n ]_ A )  = +oo ) )
5244, 48, 51cbvrex 3067 . . . . . . . 8  |-  ( E. n  e.  NN  ( vol `  A )  = +oo  <->  E. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  = +oo )
5343, 52sylib 196 . . . . . . 7  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  = +oo )
5446nfel1 2621 . . . . . . . . . . . . 13  |-  F/ n [_ k  /  n ]_ A  e.  dom  vol
5549eleq1d 2512 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( A  e.  dom  vol  <->  [_ k  /  n ]_ A  e.  dom  vol ) )
5654, 55rspc 3190 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  [_ k  /  n ]_ A  e.  dom  vol )
)
5756impcom 430 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  [_ k  /  n ]_ A  e.  dom  vol )
58 iunmbl 21941 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  e.  dom  vol )
5958adantr 465 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  U_ n  e.  NN  A  e.  dom  vol )
60 nfcv 2605 . . . . . . . . . . . . 13  |-  F/_ n NN
61 nfcv 2605 . . . . . . . . . . . . 13  |-  F/_ n
k
6260, 61, 46, 49ssiun2sf 27405 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  [_ k  /  n ]_ A  C_  U_ n  e.  NN  A
)
6362adantl 466 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  [_ k  /  n ]_ A  C_  U_ n  e.  NN  A )
64 volss 21922 . . . . . . . . . . 11  |-  ( (
[_ k  /  n ]_ A  e.  dom  vol 
/\  U_ n  e.  NN  A  e.  dom  vol  /\  [_ k  /  n ]_ A  C_  U_ n  e.  NN  A )  -> 
( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
6557, 59, 63, 64syl3anc 1229 . . . . . . . . . 10  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
6665adantlr 714 . . . . . . . . 9  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  k  e.  NN )  ->  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
6766adantlr 714 . . . . . . . 8  |-  ( ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  /\  k  e.  NN )  ->  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
6867ralrimiva 2857 . . . . . . 7  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  A. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
69 r19.29r 2979 . . . . . . 7  |-  ( ( E. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  = +oo  /\  A. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) )  ->  E. k  e.  NN  ( ( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) ) )
7053, 68, 69syl2anc 661 . . . . . 6  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. k  e.  NN  ( ( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) ) )
71 breq1 4440 . . . . . . . 8  |-  ( ( vol `  [_ k  /  n ]_ A )  = +oo  ->  (
( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A )  <-> +oo  <_  ( vol `  U_ n  e.  NN  A ) ) )
7271biimpa 484 . . . . . . 7  |-  ( ( ( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) )  -> +oo  <_  ( vol `  U_ n  e.  NN  A ) )
7372reximi 2911 . . . . . 6  |-  ( E. k  e.  NN  (
( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) )  ->  E. k  e.  NN +oo 
<_  ( vol `  U_ n  e.  NN  A ) )
7470, 73syl 16 . . . . 5  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. k  e.  NN +oo 
<_  ( vol `  U_ n  e.  NN  A ) )
75 1nn 10554 . . . . . 6  |-  1  e.  NN
76 ne0i 3776 . . . . . 6  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
77 r19.9rzv 3909 . . . . . 6  |-  ( NN  =/=  (/)  ->  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  E. k  e.  NN +oo  <_  ( vol `  U_ n  e.  NN  A ) ) )
7875, 76, 77mp2b 10 . . . . 5  |-  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  E. k  e.  NN +oo  <_  ( vol `  U_ n  e.  NN  A ) )
7974, 78sylibr 212 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  -> +oo  <_  ( vol ` 
U_ n  e.  NN  A ) )
80 iccssxr 11618 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
8112ffvelrni 6015 . . . . . . . 8  |-  ( U_ n  e.  NN  A  e.  dom  vol  ->  ( vol `  U_ n  e.  NN  A )  e.  ( 0 [,] +oo )
)
8280, 81sseldi 3487 . . . . . . 7  |-  ( U_ n  e.  NN  A  e.  dom  vol  ->  ( vol `  U_ n  e.  NN  A )  e.  RR* )
8358, 82syl 16 . . . . . 6  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( vol `  U_ n  e.  NN  A )  e.  RR* )
8483ad2antrr 725 . . . . 5  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( vol `  U_ n  e.  NN  A )  e. 
RR* )
85 xgepnf 27548 . . . . 5  |-  ( ( vol `  U_ n  e.  NN  A )  e. 
RR*  ->  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  ( vol ` 
U_ n  e.  NN  A )  = +oo ) )
8684, 85syl 16 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  ( vol ` 
U_ n  e.  NN  A )  = +oo ) )
8779, 86mpbid 210 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( vol `  U_ n  e.  NN  A )  = +oo )
88 nfdisj1 4420 . . . . . 6  |-  F/ nDisj  n  e.  NN  A
897, 88nfan 1914 . . . . 5  |-  F/ n
( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)
90 nfre1 2904 . . . . 5  |-  F/ n E. n  e.  NN  ( vol `  A )  = +oo
9189, 90nfan 1914 . . . 4  |-  F/ n
( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )
92 nnex 10549 . . . . 5  |-  NN  e.  _V
9392a1i 11 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  NN  e.  _V )
94143ad2antr3 1164 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  (Disj  n  e.  NN  A  /\  E. n  e.  NN  ( vol `  A )  = +oo  /\  n  e.  NN ) )  -> 
( vol `  A
)  e.  ( 0 [,] +oo ) )
95943anassrs 1219 . . . 4  |-  ( ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,] +oo ) )
9691, 93, 95, 43esumpinfval 28057 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  -> Σ* n  e.  NN ( vol `  A )  = +oo )
9787, 96eqtr4d 2487 . 2  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )
98 exmid 415 . . . . 5  |-  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  -.  A. n  e.  NN  ( vol `  A )  e.  RR )
99 rexnal 2891 . . . . . 6  |-  ( E. n  e.  NN  -.  ( vol `  A )  e.  RR  <->  -.  A. n  e.  NN  ( vol `  A
)  e.  RR )
10099orbi2i 519 . . . . 5  |-  ( ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  <->  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  -.  A. n  e.  NN  ( vol `  A )  e.  RR ) )
10198, 100mpbir 209 . . . 4  |-  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  -.  ( vol `  A )  e.  RR )
102 r19.29 2978 . . . . . . 7  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  ->  E. n  e.  NN  ( A  e.  dom  vol 
/\  -.  ( vol `  A )  e.  RR ) )
103 xrge0nre 27658 . . . . . . . . 9  |-  ( ( ( vol `  A
)  e.  ( 0 [,] +oo )  /\  -.  ( vol `  A
)  e.  RR )  ->  ( vol `  A
)  = +oo )
10413, 103sylan 471 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\ 
-.  ( vol `  A
)  e.  RR )  ->  ( vol `  A
)  = +oo )
105104reximi 2911 . . . . . . 7  |-  ( E. n  e.  NN  ( A  e.  dom  vol  /\  -.  ( vol `  A
)  e.  RR )  ->  E. n  e.  NN  ( vol `  A )  = +oo )
106102, 105syl 16 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  ->  E. n  e.  NN  ( vol `  A )  = +oo )
107106ex 434 . . . . 5  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( E. n  e.  NN  -.  ( vol `  A )  e.  RR  ->  E. n  e.  NN  ( vol `  A
)  = +oo )
)
108107orim2d 840 . . . 4  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  -> 
( A. n  e.  NN  ( vol `  A
)  e.  RR  \/  E. n  e.  NN  ( vol `  A )  = +oo ) ) )
109101, 108mpi 17 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  ( vol `  A
)  = +oo )
)
110109adantr 465 . 2  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\ Disj  n  e.  NN  A )  ->  ( A. n  e.  NN  ( vol `  A
)  e.  RR  \/  E. n  e.  NN  ( vol `  A )  = +oo ) )
11142, 97, 110mpjaodan 786 1  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\ Disj  n  e.  NN  A )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095   [_csb 3420    C_ wss 3461   (/)c0 3770   U_ciun 4315  Disj wdisj 4407   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   ran crn 4990   -->wf 5574   ` cfv 5578  (class class class)co 6281   supcsup 7902   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498   +oocpnf 9628   RR*cxr 9630    < clt 9631    <_ cle 9632   NNcn 10543   [,)cico 11542   [,]cicc 11543    seqcseq 12089   volcvol 21853  Σ*cesum 28018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cc 8818  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ioc 11545  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-ef 13785  df-sin 13787  df-cos 13788  df-pi 13790  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-ordt 14880  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-ps 15809  df-tsr 15810  df-plusf 15850  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-mhm 15945  df-submnd 15946  df-grp 16036  df-minusg 16037  df-sbg 16038  df-mulg 16039  df-subg 16177  df-cntz 16334  df-cmn 16779  df-abl 16780  df-mgp 17121  df-ur 17133  df-ring 17179  df-cring 17180  df-subrg 17406  df-abv 17445  df-lmod 17493  df-scaf 17494  df-sra 17797  df-rgmod 17798  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-tmd 20549  df-tgp 20550  df-tsms 20603  df-trg 20640  df-xms 20801  df-ms 20802  df-tms 20803  df-nm 21081  df-ngp 21082  df-nrg 21084  df-nlm 21085  df-ii 21359  df-cncf 21360  df-ovol 21854  df-vol 21855  df-limc 22248  df-dv 22249  df-log 22922  df-esum 28019
This theorem is referenced by:  volmeas  28181
  Copyright terms: Public domain W3C validator