Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliune Structured version   Unicode version

Theorem voliune 26809
Description: The Lebesgue measure function is countably additive. This formulation on the extended reals, allows for +oo for the measure of any set in the sum. Cf. ovoliun 21123 and voliun 21171 (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
voliune  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\ Disj  n  e.  NN  A )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )

Proof of Theorem voliune
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 r19.26 2955 . . . . 5  |-  ( A. n  e.  NN  ( A  e.  dom  vol  /\  ( vol `  A )  e.  RR )  <->  ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A
)  e.  RR ) )
2 eqid 2454 . . . . . 6  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( vol `  A ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  A ) ) )
3 eqid 2454 . . . . . 6  |-  ( n  e.  NN  |->  ( vol `  A ) )  =  ( n  e.  NN  |->  ( vol `  A ) )
42, 3voliun 21171 . . . . 5  |-  ( ( A. n  e.  NN  ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\ Disj  n  e.  NN  A
)  ->  ( vol ` 
U_ n  e.  NN  A )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  )
)
51, 4sylanbr 473 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\ Disj  n  e.  NN  A )  ->  ( vol `  U_ n  e.  NN  A )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  ) )
65an32s 802 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  A. n  e.  NN  ( vol `  A
)  e.  RR )  ->  ( vol `  U_ n  e.  NN  A )  =  sup ( ran  seq 1 (  +  , 
( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  ) )
7 nfra1 2810 . . . . . . 7  |-  F/ n A. n  e.  NN  A  e.  dom  vol
8 nfra1 2810 . . . . . . 7  |-  F/ n A. n  e.  NN  ( vol `  A )  e.  RR
97, 8nfan 1866 . . . . . 6  |-  F/ n
( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )
10 simpr 461 . . . . . . . . . 10  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  n  e.  NN )
11 nfcsb1v 3414 . . . . . . . . . . . . . . 15  |-  F/_ n [_ k  /  n ]_ A
1211nfel1 2632 . . . . . . . . . . . . . 14  |-  F/ n [_ k  /  n ]_ A  e.  dom  vol
13 nfv 1674 . . . . . . . . . . . . . 14  |-  F/ k  A  e.  dom  vol
14 csbeq1a 3407 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  A  =  [_ k  /  n ]_ A )
1514equcoms 1735 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  A  =  [_ k  /  n ]_ A )
1615eqcomd 2462 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  [_ k  /  n ]_ A  =  A )
1716eleq1d 2523 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( [_ k  /  n ]_ A  e.  dom  vol  <->  A  e.  dom  vol )
)
1812, 13, 17cbvral 3049 . . . . . . . . . . . . 13  |-  ( A. k  e.  NN  [_ k  /  n ]_ A  e. 
dom  vol  <->  A. n  e.  NN  A  e.  dom  vol )
1913, 17rspc 3173 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  ( A. k  e.  NN  [_ k  /  n ]_ A  e.  dom  vol  ->  A  e.  dom  vol )
)
2018, 19syl5bir 218 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  A  e.  dom  vol )
)
2120impcom 430 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  A  e.  dom  vol )
22 volf 21147 . . . . . . . . . . . 12  |-  vol : dom  vol --> ( 0 [,] +oo )
2322ffvelrni 5954 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] +oo ) )
2421, 23syl 16 . . . . . . . . . 10  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,] +oo ) )
253fvmpt2 5893 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  ( vol `  A )  e.  ( 0 [,] +oo ) )  ->  (
( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  ( vol `  A
) )
2610, 24, 25syl2anc 661 . . . . . . . . 9  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  n  e.  NN )  ->  ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  =  ( vol `  A ) )
2726adantlr 714 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  =  ( vol `  A ) )
2827ex 434 . . . . . . 7  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  (
n  e.  NN  ->  ( ( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  ( vol `  A
) ) )
299, 28ralrimi 2823 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  A. n  e.  NN  ( ( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  ( vol `  A ) )
309, 29esumeq2d 26658 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  -> Σ* n  e.  NN ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  = Σ* n  e.  NN ( vol `  A ) )
31 nfcv 2616 . . . . . . 7  |-  F/_ n NN
32 nfcv 2616 . . . . . . 7  |-  F/_ n
( 0 [,) +oo )
33 simpr 461 . . . . . . . . 9  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  A. n  e.  NN  ( vol `  A
)  e.  RR )
3433r19.21bi 2920 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  RR )
3524adantlr 714 . . . . . . . . 9  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,] +oo ) )
36 0xr 9544 . . . . . . . . . . 11  |-  0  e.  RR*
37 pnfxr 11206 . . . . . . . . . . 11  |- +oo  e.  RR*
38 elicc1 11458 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
( vol `  A
)  e.  ( 0 [,] +oo )  <->  ( ( vol `  A )  e. 
RR*  /\  0  <_  ( vol `  A )  /\  ( vol `  A
)  <_ +oo )
) )
3936, 37, 38mp2an 672 . . . . . . . . . 10  |-  ( ( vol `  A )  e.  ( 0 [,] +oo )  <->  ( ( vol `  A )  e.  RR*  /\  0  <_  ( vol `  A )  /\  ( vol `  A )  <_ +oo ) )
4039simp2bi 1004 . . . . . . . . 9  |-  ( ( vol `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( vol `  A
) )
4135, 40syl 16 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  0  <_  ( vol `  A ) )
42 ltpnf 11216 . . . . . . . . 9  |-  ( ( vol `  A )  e.  RR  ->  ( vol `  A )  < +oo )
4334, 42syl 16 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  < +oo )
44 0re 9500 . . . . . . . . 9  |-  0  e.  RR
45 elico2 11473 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
( vol `  A
)  e.  ( 0 [,) +oo )  <->  ( ( vol `  A )  e.  RR  /\  0  <_ 
( vol `  A
)  /\  ( vol `  A )  < +oo ) ) )
4644, 37, 45mp2an 672 . . . . . . . 8  |-  ( ( vol `  A )  e.  ( 0 [,) +oo )  <->  ( ( vol `  A )  e.  RR  /\  0  <_  ( vol `  A )  /\  ( vol `  A )  < +oo ) )
4734, 41, 43, 46syl3anbrc 1172 . . . . . . 7  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\  A. n  e.  NN  ( vol `  A )  e.  RR )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,) +oo ) )
489, 31, 32, 47, 3fmptdF 26143 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  ->  (
n  e.  NN  |->  ( vol `  A ) ) : NN --> ( 0 [,) +oo ) )
49 nfmpt1 4492 . . . . . . 7  |-  F/_ n
( n  e.  NN  |->  ( vol `  A ) )
5049esumfsupre 26685 . . . . . 6  |-  ( ( n  e.  NN  |->  ( vol `  A ) ) : NN --> ( 0 [,) +oo )  -> Σ* n  e.  NN ( ( n  e.  NN  |->  ( vol `  A ) ) `  n )  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A ) ) ) ,  RR* ,  <  )
)
5148, 50syl 16 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  -> Σ* n  e.  NN ( ( n  e.  NN  |->  ( vol `  A
) ) `  n
)  =  sup ( ran  seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A
) ) ) , 
RR* ,  <  ) )
5230, 51eqtr3d 2497 . . . 4  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  A. n  e.  NN  ( vol `  A )  e.  RR )  -> Σ* n  e.  NN ( vol `  A )  =  sup ( ran 
seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A
) ) ) , 
RR* ,  <  ) )
5352adantlr 714 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  A. n  e.  NN  ( vol `  A
)  e.  RR )  -> Σ* n  e.  NN ( vol `  A )  =  sup ( ran 
seq 1 (  +  ,  ( n  e.  NN  |->  ( vol `  A
) ) ) , 
RR* ,  <  ) )
546, 53eqtr4d 2498 . 2  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  A. n  e.  NN  ( vol `  A
)  e.  RR )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )
55 simpr 461 . . . . . . . 8  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. n  e.  NN  ( vol `  A )  = +oo )
56 nfv 1674 . . . . . . . . 9  |-  F/ k ( vol `  A
)  = +oo
57 nfcv 2616 . . . . . . . . . . 11  |-  F/_ n vol
5857, 11nffv 5809 . . . . . . . . . 10  |-  F/_ n
( vol `  [_ k  /  n ]_ A )
5958nfeq1 2631 . . . . . . . . 9  |-  F/ n
( vol `  [_ k  /  n ]_ A )  = +oo
6014fveq2d 5806 . . . . . . . . . 10  |-  ( n  =  k  ->  ( vol `  A )  =  ( vol `  [_ k  /  n ]_ A ) )
6160eqeq1d 2456 . . . . . . . . 9  |-  ( n  =  k  ->  (
( vol `  A
)  = +oo  <->  ( vol ` 
[_ k  /  n ]_ A )  = +oo ) )
6256, 59, 61cbvrex 3050 . . . . . . . 8  |-  ( E. n  e.  NN  ( vol `  A )  = +oo  <->  E. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  = +oo )
6355, 62sylib 196 . . . . . . 7  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  = +oo )
6414eleq1d 2523 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( A  e.  dom  vol  <->  [_ k  /  n ]_ A  e.  dom  vol ) )
6512, 64rspc 3173 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  ( A. n  e.  NN  A  e.  dom  vol  ->  [_ k  /  n ]_ A  e.  dom  vol )
)
6665impcom 430 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  [_ k  /  n ]_ A  e.  dom  vol )
67 iunmbl 21170 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  U_ n  e.  NN  A  e.  dom  vol )
6867adantr 465 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  U_ n  e.  NN  A  e.  dom  vol )
69 nfcv 2616 . . . . . . . . . . . . 13  |-  F/_ n
k
7031, 69, 11, 14ssiun2sf 26081 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  [_ k  /  n ]_ A  C_  U_ n  e.  NN  A
)
7170adantl 466 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  [_ k  /  n ]_ A  C_  U_ n  e.  NN  A )
72 volss 21151 . . . . . . . . . . 11  |-  ( (
[_ k  /  n ]_ A  e.  dom  vol 
/\  U_ n  e.  NN  A  e.  dom  vol  /\  [_ k  /  n ]_ A  C_  U_ n  e.  NN  A )  -> 
( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
7366, 68, 71, 72syl3anc 1219 . . . . . . . . . 10  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  k  e.  NN )  ->  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
7473adantlr 714 . . . . . . . . 9  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  k  e.  NN )  ->  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
7574adantlr 714 . . . . . . . 8  |-  ( ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  /\  k  e.  NN )  ->  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
7675ralrimiva 2830 . . . . . . 7  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  A. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A ) )
77 r19.29r 2964 . . . . . . 7  |-  ( ( E. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  = +oo  /\  A. k  e.  NN  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) )  ->  E. k  e.  NN  ( ( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) ) )
7863, 76, 77syl2anc 661 . . . . . 6  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. k  e.  NN  ( ( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) ) )
79 breq1 4406 . . . . . . . 8  |-  ( ( vol `  [_ k  /  n ]_ A )  = +oo  ->  (
( vol `  [_ k  /  n ]_ A )  <_  ( vol `  U_ n  e.  NN  A )  <-> +oo  <_  ( vol `  U_ n  e.  NN  A ) ) )
8079biimpa 484 . . . . . . 7  |-  ( ( ( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) )  -> +oo  <_  ( vol `  U_ n  e.  NN  A ) )
8180reximi 2929 . . . . . 6  |-  ( E. k  e.  NN  (
( vol `  [_ k  /  n ]_ A )  = +oo  /\  ( vol `  [_ k  /  n ]_ A )  <_ 
( vol `  U_ n  e.  NN  A ) )  ->  E. k  e.  NN +oo 
<_  ( vol `  U_ n  e.  NN  A ) )
8278, 81syl 16 . . . . 5  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  E. k  e.  NN +oo 
<_  ( vol `  U_ n  e.  NN  A ) )
83 1nn 10447 . . . . . 6  |-  1  e.  NN
84 ne0i 3754 . . . . . 6  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
85 r19.9rzv 3885 . . . . . 6  |-  ( NN  =/=  (/)  ->  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  E. k  e.  NN +oo  <_  ( vol `  U_ n  e.  NN  A ) ) )
8683, 84, 85mp2b 10 . . . . 5  |-  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  E. k  e.  NN +oo  <_  ( vol `  U_ n  e.  NN  A ) )
8782, 86sylibr 212 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  -> +oo  <_  ( vol ` 
U_ n  e.  NN  A ) )
88 iccssxr 11492 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
8922ffvelrni 5954 . . . . . . . 8  |-  ( U_ n  e.  NN  A  e.  dom  vol  ->  ( vol `  U_ n  e.  NN  A )  e.  ( 0 [,] +oo )
)
9088, 89sseldi 3465 . . . . . . 7  |-  ( U_ n  e.  NN  A  e.  dom  vol  ->  ( vol `  U_ n  e.  NN  A )  e.  RR* )
9167, 90syl 16 . . . . . 6  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( vol `  U_ n  e.  NN  A )  e.  RR* )
9291ad2antrr 725 . . . . 5  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( vol `  U_ n  e.  NN  A )  e. 
RR* )
93 xgepnf 26214 . . . . 5  |-  ( ( vol `  U_ n  e.  NN  A )  e. 
RR*  ->  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  ( vol ` 
U_ n  e.  NN  A )  = +oo ) )
9492, 93syl 16 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( +oo  <_  ( vol `  U_ n  e.  NN  A )  <->  ( vol ` 
U_ n  e.  NN  A )  = +oo ) )
9587, 94mpbid 210 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( vol `  U_ n  e.  NN  A )  = +oo )
96 nfdisj1 4386 . . . . . 6  |-  F/ nDisj  n  e.  NN  A
977, 96nfan 1866 . . . . 5  |-  F/ n
( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)
98 nfre1 2891 . . . . 5  |-  F/ n E. n  e.  NN  ( vol `  A )  = +oo
9997, 98nfan 1866 . . . 4  |-  F/ n
( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )
100 nnex 10442 . . . . 5  |-  NN  e.  _V
101100a1i 11 . . . 4  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  NN  e.  _V )
102243ad2antr3 1155 . . . . 5  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  (Disj  n  e.  NN  A  /\  E. n  e.  NN  ( vol `  A )  = +oo  /\  n  e.  NN ) )  -> 
( vol `  A
)  e.  ( 0 [,] +oo ) )
1031023anassrs 1210 . . . 4  |-  ( ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  /\  n  e.  NN )  ->  ( vol `  A
)  e.  ( 0 [,] +oo ) )
10499, 101, 103, 55esumpinfval 26687 . . 3  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  -> Σ* n  e.  NN ( vol `  A )  = +oo )
10595, 104eqtr4d 2498 . 2  |-  ( ( ( A. n  e.  NN  A  e.  dom  vol 
/\ Disj  n  e.  NN  A
)  /\  E. n  e.  NN  ( vol `  A
)  = +oo )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )
106 exmid 415 . . . . 5  |-  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  -.  A. n  e.  NN  ( vol `  A )  e.  RR )
107 rexnal 2854 . . . . . 6  |-  ( E. n  e.  NN  -.  ( vol `  A )  e.  RR  <->  -.  A. n  e.  NN  ( vol `  A
)  e.  RR )
108107orbi2i 519 . . . . 5  |-  ( ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  <->  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  -.  A. n  e.  NN  ( vol `  A )  e.  RR ) )
109106, 108mpbir 209 . . . 4  |-  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  -.  ( vol `  A )  e.  RR )
110 r19.29 2963 . . . . . . 7  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  ->  E. n  e.  NN  ( A  e.  dom  vol 
/\  -.  ( vol `  A )  e.  RR ) )
111 xrge0nre 26318 . . . . . . . . 9  |-  ( ( ( vol `  A
)  e.  ( 0 [,] +oo )  /\  -.  ( vol `  A
)  e.  RR )  ->  ( vol `  A
)  = +oo )
11223, 111sylan 471 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\ 
-.  ( vol `  A
)  e.  RR )  ->  ( vol `  A
)  = +oo )
113112reximi 2929 . . . . . . 7  |-  ( E. n  e.  NN  ( A  e.  dom  vol  /\  -.  ( vol `  A
)  e.  RR )  ->  E. n  e.  NN  ( vol `  A )  = +oo )
114110, 113syl 16 . . . . . 6  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  ->  E. n  e.  NN  ( vol `  A )  = +oo )
115114ex 434 . . . . 5  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( E. n  e.  NN  -.  ( vol `  A )  e.  RR  ->  E. n  e.  NN  ( vol `  A
)  = +oo )
)
116115orim2d 836 . . . 4  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  -.  ( vol `  A )  e.  RR )  -> 
( A. n  e.  NN  ( vol `  A
)  e.  RR  \/  E. n  e.  NN  ( vol `  A )  = +oo ) ) )
117109, 116mpi 17 . . 3  |-  ( A. n  e.  NN  A  e.  dom  vol  ->  ( A. n  e.  NN  ( vol `  A )  e.  RR  \/  E. n  e.  NN  ( vol `  A
)  = +oo )
)
118117adantr 465 . 2  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\ Disj  n  e.  NN  A )  ->  ( A. n  e.  NN  ( vol `  A
)  e.  RR  \/  E. n  e.  NN  ( vol `  A )  = +oo ) )
11954, 105, 118mpjaodan 784 1  |-  ( ( A. n  e.  NN  A  e.  dom  vol  /\ Disj  n  e.  NN  A )  ->  ( vol `  U_ n  e.  NN  A )  = Σ* n  e.  NN ( vol `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   _Vcvv 3078   [_csb 3398    C_ wss 3439   (/)c0 3748   U_ciun 4282  Disj wdisj 4373   class class class wbr 4403    |-> cmpt 4461   dom cdm 4951   ran crn 4952   -->wf 5525   ` cfv 5529  (class class class)co 6203   supcsup 7804   RRcr 9395   0cc0 9396   1c1 9397    + caddc 9399   +oocpnf 9529   RR*cxr 9531    < clt 9532    <_ cle 9533   NNcn 10436   [,)cico 11416   [,]cicc 11417    seqcseq 11926   volcvol 21082  Σ*cesum 26648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cc 8718  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-disj 4374  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-7 10499  df-8 10500  df-9 10501  df-10 10502  df-n0 10694  df-z 10761  df-dec 10870  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-ioo 11418  df-ioc 11419  df-ico 11420  df-icc 11421  df-fz 11558  df-fzo 11669  df-fl 11762  df-mod 11829  df-seq 11927  df-exp 11986  df-fac 12172  df-bc 12199  df-hash 12224  df-shft 12677  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-limsup 13070  df-clim 13087  df-rlim 13088  df-sum 13285  df-ef 13474  df-sin 13476  df-cos 13477  df-pi 13479  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-ress 14302  df-plusg 14373  df-mulr 14374  df-starv 14375  df-sca 14376  df-vsca 14377  df-ip 14378  df-tset 14379  df-ple 14380  df-ds 14382  df-unif 14383  df-hom 14384  df-cco 14385  df-rest 14483  df-topn 14484  df-0g 14502  df-gsum 14503  df-topgen 14504  df-pt 14505  df-prds 14508  df-ordt 14561  df-xrs 14562  df-qtop 14567  df-imas 14568  df-xps 14570  df-mre 14646  df-mrc 14647  df-acs 14649  df-ps 15492  df-tsr 15493  df-mnd 15537  df-plusf 15538  df-mhm 15586  df-submnd 15587  df-grp 15667  df-minusg 15668  df-sbg 15669  df-mulg 15670  df-subg 15800  df-cntz 15957  df-cmn 16403  df-abl 16404  df-mgp 16717  df-ur 16729  df-rng 16773  df-cring 16774  df-subrg 16989  df-abv 17028  df-lmod 17076  df-scaf 17077  df-sra 17379  df-rgmod 17380  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-fbas 17942  df-fg 17943  df-cnfld 17947  df-top 18638  df-bases 18640  df-topon 18641  df-topsp 18642  df-cld 18758  df-ntr 18759  df-cls 18760  df-nei 18837  df-lp 18875  df-perf 18876  df-cn 18966  df-cnp 18967  df-haus 19054  df-tx 19270  df-hmeo 19463  df-fil 19554  df-fm 19646  df-flim 19647  df-flf 19648  df-tmd 19778  df-tgp 19779  df-tsms 19832  df-trg 19869  df-xms 20030  df-ms 20031  df-tms 20032  df-nm 20310  df-ngp 20311  df-nrg 20313  df-nlm 20314  df-ii 20588  df-cncf 20589  df-ovol 21083  df-vol 21084  df-limc 21477  df-dv 21478  df-log 22144  df-esum 26649
This theorem is referenced by:  volmeas  26811
  Copyright terms: Public domain W3C validator