MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Unicode version

Theorem volinun 22041
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )

Proof of Theorem volinun
StepHypRef Expression
1 inundif 3822 . . . . 5  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
21fveq2i 5777 . . . 4  |-  ( vol `  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( vol `  A )
3 inmbl 22037 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  dom  vol )  ->  ( A  i^i  B )  e.  dom  vol )
43adantr 463 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  i^i  B
)  e.  dom  vol )
5 difmbl 22038 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  dom  vol )  ->  ( A  \  B )  e.  dom  vol )
65adantr 463 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  \  B
)  e.  dom  vol )
7 indifcom 3668 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  ( A  i^i  (
( A  i^i  B
)  \  B )
)
8 difin0 3817 . . . . . . . . 9  |-  ( ( A  i^i  B ) 
\  B )  =  (/)
98ineq2i 3611 . . . . . . . 8  |-  ( A  i^i  ( ( A  i^i  B )  \  B ) )  =  ( A  i^i  (/) )
10 in0 3738 . . . . . . . 8  |-  ( A  i^i  (/) )  =  (/)
119, 10eqtri 2411 . . . . . . 7  |-  ( A  i^i  ( ( A  i^i  B )  \  B ) )  =  (/)
127, 11eqtri 2411 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
1312a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )
14 mblvol 22026 . . . . . . 7  |-  ( ( A  i^i  B )  e.  dom  vol  ->  ( vol `  ( A  i^i  B ) )  =  ( vol* `  ( A  i^i  B
) ) )
154, 14syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  =  ( vol* `  ( A  i^i  B
) ) )
16 inss1 3632 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
1716a1i 11 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  i^i  B
)  C_  A )
18 mblss 22027 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1918ad2antrr 723 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  ->  A  C_  RR )
20 mblvol 22026 . . . . . . . . 9  |-  ( A  e.  dom  vol  ->  ( vol `  A )  =  ( vol* `  A ) )
2120ad2antrr 723 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  =  ( vol* `  A )
)
22 simprl 754 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  e.  RR )
2321, 22eqeltrrd 2471 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  A )  e.  RR )
24 ovolsscl 21982 . . . . . . 7  |-  ( ( ( A  i^i  B
)  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  e.  RR )  -> 
( vol* `  ( A  i^i  B ) )  e.  RR )
2517, 19, 23, 24syl3anc 1226 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  ( A  i^i  B ) )  e.  RR )
2615, 25eqeltrd 2470 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  e.  RR )
27 mblvol 22026 . . . . . . 7  |-  ( ( A  \  B )  e.  dom  vol  ->  ( vol `  ( A 
\  B ) )  =  ( vol* `  ( A  \  B
) ) )
286, 27syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  =  ( vol* `  ( A  \  B
) ) )
29 difssd 3546 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  \  B
)  C_  A )
30 ovolsscl 21982 . . . . . . 7  |-  ( ( ( A  \  B
)  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  e.  RR )  -> 
( vol* `  ( A  \  B ) )  e.  RR )
3129, 19, 23, 30syl3anc 1226 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  ( A  \  B ) )  e.  RR )
3228, 31eqeltrd 2470 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  e.  RR )
33 volun 22040 . . . . 5  |-  ( ( ( ( A  i^i  B )  e.  dom  vol  /\  ( A  \  B
)  e.  dom  vol  /\  ( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )  /\  (
( vol `  ( A  i^i  B ) )  e.  RR  /\  ( vol `  ( A  \  B ) )  e.  RR ) )  -> 
( vol `  (
( A  i^i  B
)  u.  ( A 
\  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
344, 6, 13, 26, 32, 33syl32anc 1234 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  (
( A  i^i  B
)  u.  ( A 
\  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
352, 34syl5eqr 2437 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
3635oveq1d 6211 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( ( vol `  ( A  i^i  B
) )  +  ( vol `  ( A 
\  B ) ) )  +  ( vol `  B ) ) )
3726recnd 9533 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  e.  CC )
3832recnd 9533 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  e.  CC )
39 simprr 755 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  B
)  e.  RR )
4039recnd 9533 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  B
)  e.  CC )
4137, 38, 40addassd 9529 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( ( vol `  ( A  i^i  B
) )  +  ( vol `  ( A 
\  B ) ) )  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( ( vol `  ( A  \  B
) )  +  ( vol `  B ) ) ) )
42 undif1 3819 . . . . 5  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
4342fveq2i 5777 . . . 4  |-  ( vol `  ( ( A  \  B )  u.  B
) )  =  ( vol `  ( A  u.  B ) )
44 simplr 753 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  ->  B  e.  dom  vol )
45 incom 3605 . . . . . . 7  |-  ( ( A  \  B )  i^i  B )  =  ( B  i^i  ( A  \  B ) )
46 disjdif 3816 . . . . . . 7  |-  ( B  i^i  ( A  \  B ) )  =  (/)
4745, 46eqtri 2411 . . . . . 6  |-  ( ( A  \  B )  i^i  B )  =  (/)
4847a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( A  \  B )  i^i  B
)  =  (/) )
49 volun 22040 . . . . 5  |-  ( ( ( ( A  \  B )  e.  dom  vol 
/\  B  e.  dom  vol 
/\  ( ( A 
\  B )  i^i 
B )  =  (/) )  /\  ( ( vol `  ( A  \  B
) )  e.  RR  /\  ( vol `  B
)  e.  RR ) )  ->  ( vol `  ( ( A  \  B )  u.  B
) )  =  ( ( vol `  ( A  \  B ) )  +  ( vol `  B
) ) )
506, 44, 48, 32, 39, 49syl32anc 1234 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  (
( A  \  B
)  u.  B ) )  =  ( ( vol `  ( A 
\  B ) )  +  ( vol `  B
) ) )
5143, 50syl5reqr 2438 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  ( A  \  B ) )  +  ( vol `  B
) )  =  ( vol `  ( A  u.  B ) ) )
5251oveq2d 6212 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  ( A  i^i  B ) )  +  ( ( vol `  ( A  \  B
) )  +  ( vol `  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )
5336, 41, 523eqtrd 2427 1  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    \ cdif 3386    u. cun 3387    i^i cin 3388    C_ wss 3389   (/)c0 3711   dom cdm 4913   ` cfv 5496  (class class class)co 6196   RRcr 9402    + caddc 9406   vol*covol 21959   volcvol 21960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-sup 7816  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-q 11102  df-rp 11140  df-ioo 11454  df-ico 11456  df-icc 11457  df-fz 11594  df-fl 11828  df-seq 12011  df-exp 12070  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-ovol 21961  df-vol 21962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator