MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Visualization version   Unicode version

Theorem volinun 22578
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )

Proof of Theorem volinun
StepHypRef Expression
1 inundif 3836 . . . . 5  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
21fveq2i 5882 . . . 4  |-  ( vol `  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( vol `  A )
3 inmbl 22574 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  dom  vol )  ->  ( A  i^i  B )  e.  dom  vol )
43adantr 472 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  i^i  B
)  e.  dom  vol )
5 difmbl 22575 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  dom  vol )  ->  ( A  \  B )  e.  dom  vol )
65adantr 472 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  \  B
)  e.  dom  vol )
7 indifcom 3679 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  ( A  i^i  (
( A  i^i  B
)  \  B )
)
8 difin0 3831 . . . . . . . . 9  |-  ( ( A  i^i  B ) 
\  B )  =  (/)
98ineq2i 3622 . . . . . . . 8  |-  ( A  i^i  ( ( A  i^i  B )  \  B ) )  =  ( A  i^i  (/) )
10 in0 3763 . . . . . . . 8  |-  ( A  i^i  (/) )  =  (/)
119, 10eqtri 2493 . . . . . . 7  |-  ( A  i^i  ( ( A  i^i  B )  \  B ) )  =  (/)
127, 11eqtri 2493 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
1312a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )
14 mblvol 22562 . . . . . . 7  |-  ( ( A  i^i  B )  e.  dom  vol  ->  ( vol `  ( A  i^i  B ) )  =  ( vol* `  ( A  i^i  B
) ) )
154, 14syl 17 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  =  ( vol* `  ( A  i^i  B
) ) )
16 inss1 3643 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
1716a1i 11 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  i^i  B
)  C_  A )
18 mblss 22563 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1918ad2antrr 740 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  ->  A  C_  RR )
20 mblvol 22562 . . . . . . . . 9  |-  ( A  e.  dom  vol  ->  ( vol `  A )  =  ( vol* `  A ) )
2120ad2antrr 740 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  =  ( vol* `  A )
)
22 simprl 772 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  e.  RR )
2321, 22eqeltrrd 2550 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  A )  e.  RR )
24 ovolsscl 22517 . . . . . . 7  |-  ( ( ( A  i^i  B
)  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  e.  RR )  -> 
( vol* `  ( A  i^i  B ) )  e.  RR )
2517, 19, 23, 24syl3anc 1292 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  ( A  i^i  B ) )  e.  RR )
2615, 25eqeltrd 2549 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  e.  RR )
27 mblvol 22562 . . . . . . 7  |-  ( ( A  \  B )  e.  dom  vol  ->  ( vol `  ( A 
\  B ) )  =  ( vol* `  ( A  \  B
) ) )
286, 27syl 17 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  =  ( vol* `  ( A  \  B
) ) )
29 difssd 3550 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  \  B
)  C_  A )
30 ovolsscl 22517 . . . . . . 7  |-  ( ( ( A  \  B
)  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  e.  RR )  -> 
( vol* `  ( A  \  B ) )  e.  RR )
3129, 19, 23, 30syl3anc 1292 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  ( A  \  B ) )  e.  RR )
3228, 31eqeltrd 2549 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  e.  RR )
33 volun 22577 . . . . 5  |-  ( ( ( ( A  i^i  B )  e.  dom  vol  /\  ( A  \  B
)  e.  dom  vol  /\  ( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )  /\  (
( vol `  ( A  i^i  B ) )  e.  RR  /\  ( vol `  ( A  \  B ) )  e.  RR ) )  -> 
( vol `  (
( A  i^i  B
)  u.  ( A 
\  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
344, 6, 13, 26, 32, 33syl32anc 1300 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  (
( A  i^i  B
)  u.  ( A 
\  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
352, 34syl5eqr 2519 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
3635oveq1d 6323 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( ( vol `  ( A  i^i  B
) )  +  ( vol `  ( A 
\  B ) ) )  +  ( vol `  B ) ) )
3726recnd 9687 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  e.  CC )
3832recnd 9687 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  e.  CC )
39 simprr 774 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  B
)  e.  RR )
4039recnd 9687 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  B
)  e.  CC )
4137, 38, 40addassd 9683 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( ( vol `  ( A  i^i  B
) )  +  ( vol `  ( A 
\  B ) ) )  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( ( vol `  ( A  \  B
) )  +  ( vol `  B ) ) ) )
42 undif1 3833 . . . . 5  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
4342fveq2i 5882 . . . 4  |-  ( vol `  ( ( A  \  B )  u.  B
) )  =  ( vol `  ( A  u.  B ) )
44 simplr 770 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  ->  B  e.  dom  vol )
45 incom 3616 . . . . . . 7  |-  ( ( A  \  B )  i^i  B )  =  ( B  i^i  ( A  \  B ) )
46 disjdif 3830 . . . . . . 7  |-  ( B  i^i  ( A  \  B ) )  =  (/)
4745, 46eqtri 2493 . . . . . 6  |-  ( ( A  \  B )  i^i  B )  =  (/)
4847a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( A  \  B )  i^i  B
)  =  (/) )
49 volun 22577 . . . . 5  |-  ( ( ( ( A  \  B )  e.  dom  vol 
/\  B  e.  dom  vol 
/\  ( ( A 
\  B )  i^i 
B )  =  (/) )  /\  ( ( vol `  ( A  \  B
) )  e.  RR  /\  ( vol `  B
)  e.  RR ) )  ->  ( vol `  ( ( A  \  B )  u.  B
) )  =  ( ( vol `  ( A  \  B ) )  +  ( vol `  B
) ) )
506, 44, 48, 32, 39, 49syl32anc 1300 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  (
( A  \  B
)  u.  B ) )  =  ( ( vol `  ( A 
\  B ) )  +  ( vol `  B
) ) )
5143, 50syl5reqr 2520 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  ( A  \  B ) )  +  ( vol `  B
) )  =  ( vol `  ( A  u.  B ) ) )
5251oveq2d 6324 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  ( A  i^i  B ) )  +  ( ( vol `  ( A  \  B
) )  +  ( vol `  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )
5336, 41, 523eqtrd 2509 1  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   dom cdm 4839   ` cfv 5589  (class class class)co 6308   RRcr 9556    + caddc 9560   vol*covol 22491   volcvol 22493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fl 12061  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-ovol 22494  df-vol 22496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator