MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Unicode version

Theorem volinun 21691
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )

Proof of Theorem volinun
StepHypRef Expression
1 inundif 3905 . . . . 5  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
21fveq2i 5867 . . . 4  |-  ( vol `  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( vol `  A )
3 inmbl 21687 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  dom  vol )  ->  ( A  i^i  B )  e.  dom  vol )
43adantr 465 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  i^i  B
)  e.  dom  vol )
5 difmbl 21688 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  dom  vol )  ->  ( A  \  B )  e.  dom  vol )
65adantr 465 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  \  B
)  e.  dom  vol )
7 indifcom 3743 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  ( A  i^i  (
( A  i^i  B
)  \  B )
)
8 difin0 3900 . . . . . . . . 9  |-  ( ( A  i^i  B ) 
\  B )  =  (/)
98ineq2i 3697 . . . . . . . 8  |-  ( A  i^i  ( ( A  i^i  B )  \  B ) )  =  ( A  i^i  (/) )
10 in0 3811 . . . . . . . 8  |-  ( A  i^i  (/) )  =  (/)
119, 10eqtri 2496 . . . . . . 7  |-  ( A  i^i  ( ( A  i^i  B )  \  B ) )  =  (/)
127, 11eqtri 2496 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
1312a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )
14 mblvol 21676 . . . . . . 7  |-  ( ( A  i^i  B )  e.  dom  vol  ->  ( vol `  ( A  i^i  B ) )  =  ( vol* `  ( A  i^i  B
) ) )
154, 14syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  =  ( vol* `  ( A  i^i  B
) ) )
16 inss1 3718 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
1716a1i 11 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  i^i  B
)  C_  A )
18 mblss 21677 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1918ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  ->  A  C_  RR )
20 mblvol 21676 . . . . . . . . 9  |-  ( A  e.  dom  vol  ->  ( vol `  A )  =  ( vol* `  A ) )
2120ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  =  ( vol* `  A )
)
22 simprl 755 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  e.  RR )
2321, 22eqeltrrd 2556 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  A )  e.  RR )
24 ovolsscl 21632 . . . . . . 7  |-  ( ( ( A  i^i  B
)  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  e.  RR )  -> 
( vol* `  ( A  i^i  B ) )  e.  RR )
2517, 19, 23, 24syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  ( A  i^i  B ) )  e.  RR )
2615, 25eqeltrd 2555 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  e.  RR )
27 mblvol 21676 . . . . . . 7  |-  ( ( A  \  B )  e.  dom  vol  ->  ( vol `  ( A 
\  B ) )  =  ( vol* `  ( A  \  B
) ) )
286, 27syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  =  ( vol* `  ( A  \  B
) ) )
29 difssd 3632 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( A  \  B
)  C_  A )
30 ovolsscl 21632 . . . . . . 7  |-  ( ( ( A  \  B
)  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  e.  RR )  -> 
( vol* `  ( A  \  B ) )  e.  RR )
3129, 19, 23, 30syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol* `  ( A  \  B ) )  e.  RR )
3228, 31eqeltrd 2555 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  e.  RR )
33 volun 21690 . . . . 5  |-  ( ( ( ( A  i^i  B )  e.  dom  vol  /\  ( A  \  B
)  e.  dom  vol  /\  ( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )  /\  (
( vol `  ( A  i^i  B ) )  e.  RR  /\  ( vol `  ( A  \  B ) )  e.  RR ) )  -> 
( vol `  (
( A  i^i  B
)  u.  ( A 
\  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
344, 6, 13, 26, 32, 33syl32anc 1236 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  (
( A  i^i  B
)  u.  ( A 
\  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
352, 34syl5eqr 2522 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  A
)  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  \  B ) ) ) )
3635oveq1d 6297 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( ( vol `  ( A  i^i  B
) )  +  ( vol `  ( A 
\  B ) ) )  +  ( vol `  B ) ) )
3726recnd 9618 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  i^i  B ) )  e.  CC )
3832recnd 9618 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  ( A  \  B ) )  e.  CC )
39 simprr 756 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  B
)  e.  RR )
4039recnd 9618 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  B
)  e.  CC )
4137, 38, 40addassd 9614 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( ( vol `  ( A  i^i  B
) )  +  ( vol `  ( A 
\  B ) ) )  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( ( vol `  ( A  \  B
) )  +  ( vol `  B ) ) ) )
42 undif1 3902 . . . . 5  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
4342fveq2i 5867 . . . 4  |-  ( vol `  ( ( A  \  B )  u.  B
) )  =  ( vol `  ( A  u.  B ) )
44 simplr 754 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  ->  B  e.  dom  vol )
45 incom 3691 . . . . . . 7  |-  ( ( A  \  B )  i^i  B )  =  ( B  i^i  ( A  \  B ) )
46 disjdif 3899 . . . . . . 7  |-  ( B  i^i  ( A  \  B ) )  =  (/)
4745, 46eqtri 2496 . . . . . 6  |-  ( ( A  \  B )  i^i  B )  =  (/)
4847a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( A  \  B )  i^i  B
)  =  (/) )
49 volun 21690 . . . . 5  |-  ( ( ( ( A  \  B )  e.  dom  vol 
/\  B  e.  dom  vol 
/\  ( ( A 
\  B )  i^i 
B )  =  (/) )  /\  ( ( vol `  ( A  \  B
) )  e.  RR  /\  ( vol `  B
)  e.  RR ) )  ->  ( vol `  ( ( A  \  B )  u.  B
) )  =  ( ( vol `  ( A  \  B ) )  +  ( vol `  B
) ) )
506, 44, 48, 32, 39, 49syl32anc 1236 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( vol `  (
( A  \  B
)  u.  B ) )  =  ( ( vol `  ( A 
\  B ) )  +  ( vol `  B
) ) )
5143, 50syl5reqr 2523 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  ( A  \  B ) )  +  ( vol `  B
) )  =  ( vol `  ( A  u.  B ) ) )
5251oveq2d 6298 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  ( A  i^i  B ) )  +  ( ( vol `  ( A  \  B
) )  +  ( vol `  B ) ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )
5336, 41, 523eqtrd 2512 1  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  dom  vol )  /\  ( ( vol `  A )  e.  RR  /\  ( vol `  B )  e.  RR ) )  -> 
( ( vol `  A
)  +  ( vol `  B ) )  =  ( ( vol `  ( A  i^i  B ) )  +  ( vol `  ( A  u.  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   dom cdm 4999   ` cfv 5586  (class class class)co 6282   RRcr 9487    + caddc 9491   vol*covol 21609   volcvol 21610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fl 11893  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-ovol 21611  df-vol 21612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator