Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volfiniune Structured version   Unicode version

Theorem volfiniune 27953
Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun 21784 what voliune 27952 is to voliun 21791. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volfiniune  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  -> 
( vol `  U_ n  e.  A  B )  = Σ* n  e.  A ( vol `  B ) )
Distinct variable group:    A, n
Allowed substitution hint:    B( n)

Proof of Theorem volfiniune
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpl1 999 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  ->  A  e.  Fin )
2 simpl2 1000 . . . . 5  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  ->  A. n  e.  A  B  e.  dom  vol )
3 simpr 461 . . . . 5  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  ->  A. n  e.  A  ( vol `  B )  e.  RR )
4 r19.26 2989 . . . . 5  |-  ( A. n  e.  A  ( B  e.  dom  vol  /\  ( vol `  B )  e.  RR )  <->  ( A. n  e.  A  B  e.  dom  vol  /\  A. n  e.  A  ( vol `  B )  e.  RR ) )
52, 3, 4sylanbrc 664 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  ->  A. n  e.  A  ( B  e.  dom  vol 
/\  ( vol `  B
)  e.  RR ) )
6 simpl3 1001 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  -> Disj  n  e.  A  B
)
7 volfiniun 21784 . . . 4  |-  ( ( A  e.  Fin  /\  A. n  e.  A  ( B  e.  dom  vol  /\  ( vol `  B
)  e.  RR )  /\ Disj  n  e.  A  B
)  ->  ( vol ` 
U_ n  e.  A  B )  =  sum_ n  e.  A  ( vol `  B ) )
81, 5, 6, 7syl3anc 1228 . . 3  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  ->  ( vol `  U_ n  e.  A  B )  =  sum_ n  e.  A  ( vol `  B ) )
9 nfcv 2629 . . . 4  |-  F/_ n A
109nfel1 2645 . . . . . 6  |-  F/ n  A  e.  Fin
11 nfra1 2845 . . . . . 6  |-  F/ n A. n  e.  A  B  e.  dom  vol
12 nfdisj1 4430 . . . . . 6  |-  F/ nDisj  n  e.  A  B
1310, 11, 12nf3an 1877 . . . . 5  |-  F/ n
( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )
14 nfra1 2845 . . . . 5  |-  F/ n A. n  e.  A  ( vol `  B )  e.  RR
1513, 14nfan 1875 . . . 4  |-  F/ n
( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B )  e.  RR )
163r19.21bi 2833 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B )  e.  RR )  /\  n  e.  A )  ->  ( vol `  B )  e.  RR )
17 nfcsb1v 3451 . . . . . . . . . . . 12  |-  F/_ n [_ k  /  n ]_ B
1817nfel1 2645 . . . . . . . . . . 11  |-  F/ n [_ k  /  n ]_ B  e.  dom  vol
19 nfv 1683 . . . . . . . . . . 11  |-  F/ k  B  e.  dom  vol
20 csbeq1a 3444 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  B  =  [_ k  /  n ]_ B )
2120equcoms 1744 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  B  =  [_ k  /  n ]_ B )
2221eqcomd 2475 . . . . . . . . . . . 12  |-  ( k  =  n  ->  [_ k  /  n ]_ B  =  B )
2322eleq1d 2536 . . . . . . . . . . 11  |-  ( k  =  n  ->  ( [_ k  /  n ]_ B  e.  dom  vol  <->  B  e.  dom  vol )
)
2418, 19, 23cbvral 3084 . . . . . . . . . 10  |-  ( A. k  e.  A  [_ k  /  n ]_ B  e. 
dom  vol  <->  A. n  e.  A  B  e.  dom  vol )
2519, 23rspc 3208 . . . . . . . . . 10  |-  ( n  e.  A  ->  ( A. k  e.  A  [_ k  /  n ]_ B  e.  dom  vol  ->  B  e.  dom  vol )
)
2624, 25syl5bir 218 . . . . . . . . 9  |-  ( n  e.  A  ->  ( A. n  e.  A  B  e.  dom  vol  ->  B  e.  dom  vol )
)
2726impcom 430 . . . . . . . 8  |-  ( ( A. n  e.  A  B  e.  dom  vol  /\  n  e.  A )  ->  B  e.  dom  vol )
28 volf 21767 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] +oo )
2928ffvelrni 6021 . . . . . . . 8  |-  ( B  e.  dom  vol  ->  ( vol `  B )  e.  ( 0 [,] +oo ) )
3027, 29syl 16 . . . . . . 7  |-  ( ( A. n  e.  A  B  e.  dom  vol  /\  n  e.  A )  ->  ( vol `  B
)  e.  ( 0 [,] +oo ) )
312, 30sylan 471 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B )  e.  RR )  /\  n  e.  A )  ->  ( vol `  B )  e.  ( 0 [,] +oo ) )
32 0xr 9641 . . . . . . . 8  |-  0  e.  RR*
33 pnfxr 11322 . . . . . . . 8  |- +oo  e.  RR*
34 elicc1 11574 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
( vol `  B
)  e.  ( 0 [,] +oo )  <->  ( ( vol `  B )  e. 
RR*  /\  0  <_  ( vol `  B )  /\  ( vol `  B
)  <_ +oo )
) )
3532, 33, 34mp2an 672 . . . . . . 7  |-  ( ( vol `  B )  e.  ( 0 [,] +oo )  <->  ( ( vol `  B )  e.  RR*  /\  0  <_  ( vol `  B )  /\  ( vol `  B )  <_ +oo ) )
3635simp2bi 1012 . . . . . 6  |-  ( ( vol `  B )  e.  ( 0 [,] +oo )  ->  0  <_ 
( vol `  B
) )
3731, 36syl 16 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B )  e.  RR )  /\  n  e.  A )  ->  0  <_  ( vol `  B
) )
38 ltpnf 11332 . . . . . 6  |-  ( ( vol `  B )  e.  RR  ->  ( vol `  B )  < +oo )
3916, 38syl 16 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B )  e.  RR )  /\  n  e.  A )  ->  ( vol `  B )  < +oo )
40 0re 9597 . . . . . 6  |-  0  e.  RR
41 elico2 11589 . . . . . 6  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
( vol `  B
)  e.  ( 0 [,) +oo )  <->  ( ( vol `  B )  e.  RR  /\  0  <_ 
( vol `  B
)  /\  ( vol `  B )  < +oo ) ) )
4240, 33, 41mp2an 672 . . . . 5  |-  ( ( vol `  B )  e.  ( 0 [,) +oo )  <->  ( ( vol `  B )  e.  RR  /\  0  <_  ( vol `  B )  /\  ( vol `  B )  < +oo ) )
4316, 37, 39, 42syl3anbrc 1180 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B )  e.  RR )  /\  n  e.  A )  ->  ( vol `  B )  e.  ( 0 [,) +oo ) )
449, 15, 1, 43esumpfinvalf 27833 . . 3  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  -> Σ* n  e.  A ( vol `  B )  =  sum_ n  e.  A  ( vol `  B ) )
458, 44eqtr4d 2511 . 2  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  A. n  e.  A  ( vol `  B
)  e.  RR )  ->  ( vol `  U_ n  e.  A  B )  = Σ* n  e.  A ( vol `  B ) )
46 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  E. n  e.  A  ( vol `  B )  = +oo )
47 nfv 1683 . . . . . . . . 9  |-  F/ k ( vol `  B
)  = +oo
48 nfcv 2629 . . . . . . . . . . 11  |-  F/_ n vol
4948, 17nffv 5873 . . . . . . . . . 10  |-  F/_ n
( vol `  [_ k  /  n ]_ B )
5049nfeq1 2644 . . . . . . . . 9  |-  F/ n
( vol `  [_ k  /  n ]_ B )  = +oo
5120fveq2d 5870 . . . . . . . . . 10  |-  ( n  =  k  ->  ( vol `  B )  =  ( vol `  [_ k  /  n ]_ B ) )
5251eqeq1d 2469 . . . . . . . . 9  |-  ( n  =  k  ->  (
( vol `  B
)  = +oo  <->  ( vol ` 
[_ k  /  n ]_ B )  = +oo ) )
5347, 50, 52cbvrex 3085 . . . . . . . 8  |-  ( E. n  e.  A  ( vol `  B )  = +oo  <->  E. k  e.  A  ( vol ` 
[_ k  /  n ]_ B )  = +oo )
5446, 53sylib 196 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  E. k  e.  A  ( vol `  [_ k  /  n ]_ B )  = +oo )
5520eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( B  e.  dom  vol  <->  [_ k  /  n ]_ B  e.  dom  vol ) )
5618, 55rspc 3208 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  ( A. n  e.  A  B  e.  dom  vol  ->  [_ k  /  n ]_ B  e.  dom  vol )
)
5756impcom 430 . . . . . . . . . . . 12  |-  ( ( A. n  e.  A  B  e.  dom  vol  /\  k  e.  A )  ->  [_ k  /  n ]_ B  e.  dom  vol )
5857adantll 713 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol )  /\  k  e.  A
)  ->  [_ k  /  n ]_ B  e.  dom  vol )
59 finiunmbl 21781 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol )  ->  U_ n  e.  A  B  e.  dom  vol )
6059adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol )  /\  k  e.  A
)  ->  U_ n  e.  A  B  e.  dom  vol )
61 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ n
k
629, 61, 17, 20ssiun2sf 27197 . . . . . . . . . . . 12  |-  ( k  e.  A  ->  [_ k  /  n ]_ B  C_  U_ n  e.  A  B
)
6362adantl 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol )  /\  k  e.  A
)  ->  [_ k  /  n ]_ B  C_  U_ n  e.  A  B )
64 volss 21771 . . . . . . . . . . 11  |-  ( (
[_ k  /  n ]_ B  e.  dom  vol 
/\  U_ n  e.  A  B  e.  dom  vol  /\  [_ k  /  n ]_ B  C_  U_ n  e.  A  B )  -> 
( vol `  [_ k  /  n ]_ B )  <_  ( vol `  U_ n  e.  A  B )
)
6558, 60, 63, 64syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol )  /\  k  e.  A
)  ->  ( vol ` 
[_ k  /  n ]_ B )  <_  ( vol `  U_ n  e.  A  B ) )
66653adantl3 1154 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  k  e.  A
)  ->  ( vol ` 
[_ k  /  n ]_ B )  <_  ( vol `  U_ n  e.  A  B ) )
6766adantlr 714 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B )  = +oo )  /\  k  e.  A )  ->  ( vol `  [_ k  /  n ]_ B )  <_ 
( vol `  U_ n  e.  A  B )
)
6867ralrimiva 2878 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  A. k  e.  A  ( vol `  [_ k  /  n ]_ B )  <_  ( vol `  U_ n  e.  A  B )
)
69 r19.29r 2998 . . . . . . 7  |-  ( ( E. k  e.  A  ( vol `  [_ k  /  n ]_ B )  = +oo  /\  A. k  e.  A  ( vol `  [_ k  /  n ]_ B )  <_ 
( vol `  U_ n  e.  A  B )
)  ->  E. k  e.  A  ( ( vol `  [_ k  /  n ]_ B )  = +oo  /\  ( vol `  [_ k  /  n ]_ B )  <_  ( vol `  U_ n  e.  A  B ) ) )
7054, 68, 69syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  E. k  e.  A  ( ( vol `  [_ k  /  n ]_ B )  = +oo  /\  ( vol `  [_ k  /  n ]_ B )  <_ 
( vol `  U_ n  e.  A  B )
) )
71 breq1 4450 . . . . . . . 8  |-  ( ( vol `  [_ k  /  n ]_ B )  = +oo  ->  (
( vol `  [_ k  /  n ]_ B )  <_  ( vol `  U_ n  e.  A  B )  <-> +oo 
<_  ( vol `  U_ n  e.  A  B )
) )
7271biimpa 484 . . . . . . 7  |-  ( ( ( vol `  [_ k  /  n ]_ B )  = +oo  /\  ( vol `  [_ k  /  n ]_ B )  <_ 
( vol `  U_ n  e.  A  B )
)  -> +oo  <_  ( vol `  U_ n  e.  A  B ) )
7372reximi 2932 . . . . . 6  |-  ( E. k  e.  A  ( ( vol `  [_ k  /  n ]_ B )  = +oo  /\  ( vol `  [_ k  /  n ]_ B )  <_ 
( vol `  U_ n  e.  A  B )
)  ->  E. k  e.  A +oo  <_  ( vol `  U_ n  e.  A  B ) )
7470, 73syl 16 . . . . 5  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  E. k  e.  A +oo  <_  ( vol `  U_ n  e.  A  B )
)
75 rexex 2921 . . . . . 6  |-  ( E. k  e.  A +oo  <_  ( vol `  U_ n  e.  A  B )  ->  E. k +oo  <_  ( vol `  U_ n  e.  A  B )
)
76 19.9v 1728 . . . . . 6  |-  ( E. k +oo  <_  ( vol `  U_ n  e.  A  B )  <-> +oo  <_  ( vol `  U_ n  e.  A  B ) )
7775, 76sylib 196 . . . . 5  |-  ( E. k  e.  A +oo  <_  ( vol `  U_ n  e.  A  B )  -> +oo  <_  ( vol ` 
U_ n  e.  A  B ) )
7874, 77syl 16 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  -> +oo  <_  ( vol ` 
U_ n  e.  A  B ) )
79 iccssxr 11608 . . . . . . . . 9  |-  ( 0 [,] +oo )  C_  RR*
8028ffvelrni 6021 . . . . . . . . 9  |-  ( U_ n  e.  A  B  e.  dom  vol  ->  ( vol `  U_ n  e.  A  B )  e.  ( 0 [,] +oo )
)
8179, 80sseldi 3502 . . . . . . . 8  |-  ( U_ n  e.  A  B  e.  dom  vol  ->  ( vol `  U_ n  e.  A  B )  e.  RR* )
8259, 81syl 16 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol )  -> 
( vol `  U_ n  e.  A  B )  e.  RR* )
83823adant3 1016 . . . . . 6  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  -> 
( vol `  U_ n  e.  A  B )  e.  RR* )
8483adantr 465 . . . . 5  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  ( vol `  U_ n  e.  A  B )  e.  RR* )
85 xgepnf 27335 . . . . 5  |-  ( ( vol `  U_ n  e.  A  B )  e.  RR*  ->  ( +oo  <_  ( vol `  U_ n  e.  A  B )  <->  ( vol `  U_ n  e.  A  B )  = +oo ) )
8684, 85syl 16 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  ( +oo  <_  ( vol `  U_ n  e.  A  B )  <->  ( vol ` 
U_ n  e.  A  B )  = +oo ) )
8778, 86mpbid 210 . . 3  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  ( vol `  U_ n  e.  A  B )  = +oo )
88 nfre1 2925 . . . . 5  |-  F/ n E. n  e.  A  ( vol `  B )  = +oo
8913, 88nfan 1875 . . . 4  |-  F/ n
( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B )  = +oo )
90 simpl1 999 . . . 4  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  A  e.  Fin )
91303ad2antl2 1159 . . . . 5  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  n  e.  A
)  ->  ( vol `  B )  e.  ( 0 [,] +oo )
)
9291adantlr 714 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B )  = +oo )  /\  n  e.  A )  ->  ( vol `  B )  e.  ( 0 [,] +oo ) )
9389, 90, 92, 46esumpinfval 27830 . . 3  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  -> Σ* n  e.  A ( vol `  B )  = +oo )
9487, 93eqtr4d 2511 . 2  |-  ( ( ( A  e.  Fin  /\ 
A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  /\  E. n  e.  A  ( vol `  B
)  = +oo )  ->  ( vol `  U_ n  e.  A  B )  = Σ* n  e.  A ( vol `  B ) )
95 exmid 415 . . . . 5  |-  ( A. n  e.  A  ( vol `  B )  e.  RR  \/  -.  A. n  e.  A  ( vol `  B )  e.  RR )
96 rexnal 2912 . . . . . 6  |-  ( E. n  e.  A  -.  ( vol `  B )  e.  RR  <->  -.  A. n  e.  A  ( vol `  B )  e.  RR )
9796orbi2i 519 . . . . 5  |-  ( ( A. n  e.  A  ( vol `  B )  e.  RR  \/  E. n  e.  A  -.  ( vol `  B )  e.  RR )  <->  ( A. n  e.  A  ( vol `  B )  e.  RR  \/  -.  A. n  e.  A  ( vol `  B )  e.  RR ) )
9895, 97mpbir 209 . . . 4  |-  ( A. n  e.  A  ( vol `  B )  e.  RR  \/  E. n  e.  A  -.  ( vol `  B )  e.  RR )
99 r19.29 2997 . . . . . . 7  |-  ( ( A. n  e.  A  B  e.  dom  vol  /\  E. n  e.  A  -.  ( vol `  B )  e.  RR )  ->  E. n  e.  A  ( B  e.  dom  vol 
/\  -.  ( vol `  B )  e.  RR ) )
100 xrge0nre 27439 . . . . . . . . 9  |-  ( ( ( vol `  B
)  e.  ( 0 [,] +oo )  /\  -.  ( vol `  B
)  e.  RR )  ->  ( vol `  B
)  = +oo )
10129, 100sylan 471 . . . . . . . 8  |-  ( ( B  e.  dom  vol  /\ 
-.  ( vol `  B
)  e.  RR )  ->  ( vol `  B
)  = +oo )
102101reximi 2932 . . . . . . 7  |-  ( E. n  e.  A  ( B  e.  dom  vol  /\ 
-.  ( vol `  B
)  e.  RR )  ->  E. n  e.  A  ( vol `  B )  = +oo )
10399, 102syl 16 . . . . . 6  |-  ( ( A. n  e.  A  B  e.  dom  vol  /\  E. n  e.  A  -.  ( vol `  B )  e.  RR )  ->  E. n  e.  A  ( vol `  B )  = +oo )
104103ex 434 . . . . 5  |-  ( A. n  e.  A  B  e.  dom  vol  ->  ( E. n  e.  A  -.  ( vol `  B )  e.  RR  ->  E. n  e.  A  ( vol `  B )  = +oo ) )
105104orim2d 838 . . . 4  |-  ( A. n  e.  A  B  e.  dom  vol  ->  ( ( A. n  e.  A  ( vol `  B )  e.  RR  \/  E. n  e.  A  -.  ( vol `  B )  e.  RR )  -> 
( A. n  e.  A  ( vol `  B
)  e.  RR  \/  E. n  e.  A  ( vol `  B )  = +oo ) ) )
10698, 105mpi 17 . . 3  |-  ( A. n  e.  A  B  e.  dom  vol  ->  ( A. n  e.  A  ( vol `  B )  e.  RR  \/  E. n  e.  A  ( vol `  B )  = +oo ) )
1071063ad2ant2 1018 . 2  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  -> 
( A. n  e.  A  ( vol `  B
)  e.  RR  \/  E. n  e.  A  ( vol `  B )  = +oo ) )
10845, 94, 107mpjaodan 784 1  |-  ( ( A  e.  Fin  /\  A. n  e.  A  B  e.  dom  vol  /\ Disj  n  e.  A  B )  -> 
( vol `  U_ n  e.  A  B )  = Σ* n  e.  A ( vol `  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2814   E.wrex 2815   [_csb 3435    C_ wss 3476   U_ciun 4325  Disj wdisj 4417   class class class wbr 4447   dom cdm 4999   ` cfv 5588  (class class class)co 6285   Fincfn 7517   RRcr 9492   0cc0 9493   +oocpnf 9626   RR*cxr 9628    < clt 9629    <_ cle 9630   [,)cico 11532   [,]cicc 11533   sum_csu 13474   volcvol 21702  Σ*cesum 27791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-inf2 8059  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571  ax-addf 9572  ax-mulf 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6903  df-recs 7043  df-rdg 7077  df-1o 7131  df-2o 7132  df-oadd 7135  df-er 7312  df-map 7423  df-pm 7424  df-ixp 7471  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-fsupp 7831  df-fi 7872  df-sup 7902  df-oi 7936  df-card 8321  df-cda 8549  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10978  df-uz 11084  df-q 11184  df-rp 11222  df-xneg 11319  df-xadd 11320  df-xmul 11321  df-ioo 11534  df-ioc 11535  df-ico 11536  df-icc 11537  df-fz 11674  df-fzo 11794  df-fl 11898  df-mod 11966  df-seq 12077  df-exp 12136  df-fac 12323  df-bc 12350  df-hash 12375  df-shft 12866  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-limsup 13260  df-clim 13277  df-rlim 13278  df-sum 13475  df-ef 13668  df-sin 13670  df-cos 13671  df-pi 13673  df-struct 14495  df-ndx 14496  df-slot 14497  df-base 14498  df-sets 14499  df-ress 14500  df-plusg 14571  df-mulr 14572  df-starv 14573  df-sca 14574  df-vsca 14575  df-ip 14576  df-tset 14577  df-ple 14578  df-ds 14580  df-unif 14581  df-hom 14582  df-cco 14583  df-rest 14681  df-topn 14682  df-0g 14700  df-gsum 14701  df-topgen 14702  df-pt 14703  df-prds 14706  df-ordt 14759  df-xrs 14760  df-qtop 14765  df-imas 14766  df-xps 14768  df-mre 14844  df-mrc 14845  df-acs 14847  df-ps 15690  df-tsr 15691  df-mnd 15735  df-plusf 15736  df-mhm 15789  df-submnd 15790  df-grp 15871  df-minusg 15872  df-sbg 15873  df-mulg 15874  df-subg 16012  df-cntz 16169  df-cmn 16615  df-abl 16616  df-mgp 16956  df-ur 16968  df-rng 17014  df-cring 17015  df-subrg 17239  df-abv 17278  df-lmod 17326  df-scaf 17327  df-sra 17630  df-rgmod 17631  df-psmet 18222  df-xmet 18223  df-met 18224  df-bl 18225  df-mopn 18226  df-fbas 18227  df-fg 18228  df-cnfld 18232  df-top 19206  df-bases 19208  df-topon 19209  df-topsp 19210  df-cld 19326  df-ntr 19327  df-cls 19328  df-nei 19405  df-lp 19443  df-perf 19444  df-cn 19534  df-cnp 19535  df-haus 19622  df-tx 19890  df-hmeo 20083  df-fil 20174  df-fm 20266  df-flim 20267  df-flf 20268  df-tmd 20398  df-tgp 20399  df-tsms 20452  df-trg 20489  df-xms 20650  df-ms 20651  df-tms 20652  df-nm 20930  df-ngp 20931  df-nrg 20933  df-nlm 20934  df-ii 21208  df-cncf 21209  df-ovol 21703  df-vol 21704  df-limc 22097  df-dv 22098  df-log 22769  df-esum 27792
This theorem is referenced by:  volmeas  27954
  Copyright terms: Public domain W3C validator