MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Structured version   Unicode version

Theorem volcn 21992
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1  |-  F  =  ( x  e.  RR  |->  ( vol `  ( A  i^i  ( B [,] x ) ) ) )
Assertion
Ref Expression
volcn  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F  e.  ( RR -cn-> RR ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem volcn
Dummy variables  u  e  v  y  z 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  A  e.  dom  vol )
2 iccmbl 21953 . . . . . . 7  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B [,] x
)  e.  dom  vol )
32adantll 713 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( B [,] x )  e.  dom  vol )
4 inmbl 21929 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( B [,] x
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] x ) )  e.  dom  vol )
51, 3, 4syl2anc 661 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( A  i^i  ( B [,] x ) )  e.  dom  vol )
6 mblvol 21918 . . . . 5  |-  ( ( A  i^i  ( B [,] x ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol* `  ( A  i^i  ( B [,] x ) ) ) )
75, 6syl 16 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol* `  ( A  i^i  ( B [,] x ) ) ) )
8 inss2 3704 . . . . . 6  |-  ( A  i^i  ( B [,] x ) )  C_  ( B [,] x )
98a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( A  i^i  ( B [,] x ) )  C_  ( B [,] x ) )
10 mblss 21919 . . . . . 6  |-  ( ( B [,] x )  e.  dom  vol  ->  ( B [,] x ) 
C_  RR )
113, 10syl 16 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( B [,] x )  C_  RR )
12 mblvol 21918 . . . . . . 7  |-  ( ( B [,] x )  e.  dom  vol  ->  ( vol `  ( B [,] x ) )  =  ( vol* `  ( B [,] x
) ) )
133, 12syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  =  ( vol* `  ( B [,] x
) ) )
14 iccvolcl 21954 . . . . . . 7  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  e.  RR )
1514adantll 713 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  e.  RR )
1613, 15eqeltrrd 2532 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol* `  ( B [,] x
) )  e.  RR )
17 ovolsscl 21874 . . . . 5  |-  ( ( ( A  i^i  ( B [,] x ) ) 
C_  ( B [,] x )  /\  ( B [,] x )  C_  RR  /\  ( vol* `  ( B [,] x
) )  e.  RR )  ->  ( vol* `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
189, 11, 16, 17syl3anc 1229 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol* `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
197, 18eqeltrd 2531 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
20 volcn.1 . . 3  |-  F  =  ( x  e.  RR  |->  ( vol `  ( A  i^i  ( B [,] x ) ) ) )
2119, 20fmptd 6040 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F : RR --> RR )
22 simprr 757 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  e  e.  RR+ )
23 oveq12 6290 . . . . . . . . . . . . 13  |-  ( ( v  =  z  /\  u  =  y )  ->  ( v  -  u
)  =  ( z  -  y ) )
2423ancoms 453 . . . . . . . . . . . 12  |-  ( ( u  =  y  /\  v  =  z )  ->  ( v  -  u
)  =  ( z  -  y ) )
2524fveq2d 5860 . . . . . . . . . . 11  |-  ( ( u  =  y  /\  v  =  z )  ->  ( abs `  (
v  -  u ) )  =  ( abs `  ( z  -  y
) ) )
2625breq1d 4447 . . . . . . . . . 10  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( abs `  (
v  -  u ) )  <  e  <->  ( abs `  ( z  -  y
) )  <  e
) )
27 fveq2 5856 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  ( F `  v )  =  ( F `  z ) )
28 fveq2 5856 . . . . . . . . . . . . 13  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
2927, 28oveqan12rd 6301 . . . . . . . . . . . 12  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( F `  v )  -  ( F `  u )
)  =  ( ( F `  z )  -  ( F `  y ) ) )
3029fveq2d 5860 . . . . . . . . . . 11  |-  ( ( u  =  y  /\  v  =  z )  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  =  ( abs `  ( ( F `  z )  -  ( F `  y )
) ) )
3130breq1d 4447 . . . . . . . . . 10  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e  <->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  <  e
) )
3226, 31imbi12d 320 . . . . . . . . 9  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( ( abs `  ( v  -  u
) )  <  e  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
33 oveq12 6290 . . . . . . . . . . . . 13  |-  ( ( v  =  y  /\  u  =  z )  ->  ( v  -  u
)  =  ( y  -  z ) )
3433ancoms 453 . . . . . . . . . . . 12  |-  ( ( u  =  z  /\  v  =  y )  ->  ( v  -  u
)  =  ( y  -  z ) )
3534fveq2d 5860 . . . . . . . . . . 11  |-  ( ( u  =  z  /\  v  =  y )  ->  ( abs `  (
v  -  u ) )  =  ( abs `  ( y  -  z
) ) )
3635breq1d 4447 . . . . . . . . . 10  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( abs `  (
v  -  u ) )  <  e  <->  ( abs `  ( y  -  z
) )  <  e
) )
37 fveq2 5856 . . . . . . . . . . . . 13  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
38 fveq2 5856 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  ( F `  u )  =  ( F `  z ) )
3937, 38oveqan12rd 6301 . . . . . . . . . . . 12  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( F `  v )  -  ( F `  u )
)  =  ( ( F `  y )  -  ( F `  z ) ) )
4039fveq2d 5860 . . . . . . . . . . 11  |-  ( ( u  =  z  /\  v  =  y )  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
4140breq1d 4447 . . . . . . . . . 10  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e  <->  ( abs `  ( ( F `  y )  -  ( F `  z )
) )  <  e
) )
4236, 41imbi12d 320 . . . . . . . . 9  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( ( abs `  ( v  -  u
) )  <  e  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  e  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  e ) ) )
43 ssid 3508 . . . . . . . . . 10  |-  RR  C_  RR
4443a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  RR  C_  RR )
45 recn 9585 . . . . . . . . . . . . 13  |-  ( z  e.  RR  ->  z  e.  CC )
46 recn 9585 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  y  e.  CC )
47 abssub 13140 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
z  -  y ) )  =  ( abs `  ( y  -  z
) ) )
4845, 46, 47syl2anr 478 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( abs `  (
z  -  y ) )  =  ( abs `  ( y  -  z
) ) )
4948adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( abs `  ( z  -  y
) )  =  ( abs `  ( y  -  z ) ) )
5049breq1d 4447 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( z  -  y ) )  < 
e  <->  ( abs `  (
y  -  z ) )  <  e ) )
5121adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  F : RR --> RR )
52 ffvelrn 6014 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  y  e.  RR )  ->  ( F `  y
)  e.  RR )
53 ffvelrn 6014 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  z  e.  RR )  ->  ( F `  z
)  e.  RR )
5452, 53anim12dan 837 . . . . . . . . . . . . 13  |-  ( ( F : RR --> RR  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  RR  /\  ( F `
 z )  e.  RR ) )
5551, 54sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( F `  y )  e.  RR  /\  ( F `
 z )  e.  RR ) )
56 recn 9585 . . . . . . . . . . . . 13  |-  ( ( F `  z )  e.  RR  ->  ( F `  z )  e.  CC )
57 recn 9585 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e.  RR  ->  ( F `  y )  e.  CC )
58 abssub 13140 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  y )  e.  CC )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
5956, 57, 58syl2anr 478 . . . . . . . . . . . 12  |-  ( ( ( F `  y
)  e.  RR  /\  ( F `  z )  e.  RR )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
6055, 59syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  =  ( abs `  ( ( F `  y )  -  ( F `  z ) ) ) )
6160breq1d 4447 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( ( F `
 z )  -  ( F `  y ) ) )  <  e  <->  ( abs `  ( ( F `  y )  -  ( F `  z ) ) )  <  e ) )
6250, 61imbi12d 320 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  e  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  e ) ) )
63 simpr2 1004 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
z  e.  RR )
64 oveq2 6289 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  ( B [,] x )  =  ( B [,] z
) )
6564ineq2d 3685 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  ( A  i^i  ( B [,] x ) )  =  ( A  i^i  ( B [,] z ) ) )
6665fveq2d 5860 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
67 fvex 5866 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( A  i^i  ( B [,] z ) ) )  e.  _V
6866, 20, 67fvmpt 5941 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
6963, 68syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
70 simplll 759 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  A  e.  dom  vol )
71 simplr 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  B  e.  RR )
7271adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  B  e.  RR )
73 iccmbl 21953 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  z  e.  RR )  ->  ( B [,] z
)  e.  dom  vol )
7472, 63, 73syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] z
)  e.  dom  vol )
75 inmbl 21929 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  ( B [,] z
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] z ) )  e.  dom  vol )
7670, 74, 75syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) )  e.  dom  vol )
77 mblvol 21918 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( B [,] z ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] z ) ) )  =  ( vol* `  ( A  i^i  ( B [,] z ) ) ) )
7876, 77syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol `  ( A  i^i  ( B [,] z ) ) )  =  ( vol* `  ( A  i^i  ( B [,] z ) ) ) )
7969, 78eqtrd 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  =  ( vol* `  ( A  i^i  ( B [,] z
) ) ) )
80 simpr1 1003 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
y  e.  RR )
81 oveq2 6289 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( B [,] x )  =  ( B [,] y
) )
8281ineq2d 3685 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( A  i^i  ( B [,] x ) )  =  ( A  i^i  ( B [,] y ) ) )
8382fveq2d 5860 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
84 fvex 5866 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( A  i^i  ( B [,] y ) ) )  e.  _V
8583, 20, 84fvmpt 5941 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
8680, 85syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
87 simp1 997 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  y  e.  RR )
88 iccmbl 21953 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  y  e.  RR )  ->  ( B [,] y
)  e.  dom  vol )
8971, 87, 88syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] y
)  e.  dom  vol )
90 inmbl 21929 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  ( B [,] y
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] y ) )  e.  dom  vol )
9170, 89, 90syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) )  e.  dom  vol )
92 mblvol 21918 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( B [,] y ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] y ) ) )  =  ( vol* `  ( A  i^i  ( B [,] y ) ) ) )
9391, 92syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol `  ( A  i^i  ( B [,] y ) ) )  =  ( vol* `  ( A  i^i  ( B [,] y ) ) ) )
9486, 93eqtrd 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  =  ( vol* `  ( A  i^i  ( B [,] y
) ) ) )
9579, 94oveq12d 6299 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  =  ( ( vol* `  ( A  i^i  ( B [,] z ) ) )  -  ( vol* `  ( A  i^i  ( B [,] y ) ) ) ) )
9651adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  F : RR --> RR )
9796, 63ffvelrnd 6017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  e.  RR )
9879, 97eqeltrrd 2532 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] z ) ) )  e.  RR )
9972leidd 10126 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  B  <_  B )
100 simpr3 1005 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
y  <_  z )
101 iccss 11602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  RR  /\  z  e.  RR )  /\  ( B  <_  B  /\  y  <_  z
) )  ->  ( B [,] y )  C_  ( B [,] z ) )
10272, 63, 99, 100, 101syl22anc 1230 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] y
)  C_  ( B [,] z ) )
103 sslin 3709 . . . . . . . . . . . . . . . . . 18  |-  ( ( B [,] y ) 
C_  ( B [,] z )  ->  ( A  i^i  ( B [,] y ) )  C_  ( A  i^i  ( B [,] z ) ) )
104102, 103syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) ) 
C_  ( A  i^i  ( B [,] z ) ) )
105 mblss 21919 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  i^i  ( B [,] z ) )  e.  dom  vol  ->  ( A  i^i  ( B [,] z ) ) 
C_  RR )
10676, 105syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  RR )
107104, 106sstrd 3499 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) ) 
C_  RR )
108 iccssre 11616 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y [,] z
)  C_  RR )
10980, 63, 108syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( y [,] z
)  C_  RR )
110107, 109unssd 3665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) 
C_  RR )
11196, 80ffvelrnd 6017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  e.  RR )
11294, 111eqeltrrd 2532 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] y ) ) )  e.  RR )
11363, 80resubcld 9994 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( z  -  y
)  e.  RR )
114112, 113readdcld 9626 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) )  e.  RR )
115 ovolicc 21911 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( vol* `  ( y [,] z ) )  =  ( z  -  y ) )
116115adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( y [,] z
) )  =  ( z  -  y ) )
117116, 113eqeltrd 2531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( y [,] z
) )  e.  RR )
118 ovolun 21887 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  i^i  ( B [,] y ) )  C_  RR  /\  ( vol* `  ( A  i^i  ( B [,] y ) ) )  e.  RR )  /\  ( ( y [,] z )  C_  RR  /\  ( vol* `  ( y [,] z
) )  e.  RR ) )  ->  ( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y
) ) )  +  ( vol* `  ( y [,] z
) ) ) )
119107, 112, 109, 117, 118syl22anc 1230 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( vol* `  ( y [,] z
) ) ) )
120116oveq2d 6297 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( vol* `  ( y [,] z ) ) )  =  ( ( vol* `  ( A  i^i  ( B [,] y
) ) )  +  ( z  -  y
) ) )
121119, 120breqtrd 4461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) )
122 ovollecl 21871 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) 
C_  RR  /\  (
( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) )  e.  RR  /\  ( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y
) ) )  +  ( z  -  y
) ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  e.  RR )
123110, 114, 121, 122syl3anc 1229 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  e.  RR )
12472adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  B  e.  RR )
12563adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  z  e.  RR )
12680adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  e.  RR )
127 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  B  <_  y )
128100adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  <_  z )
129 simp2 998 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  z  e.  RR )
130 elicc2 11599 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  RR  /\  z  e.  RR )  ->  ( y  e.  ( B [,] z )  <-> 
( y  e.  RR  /\  B  <_  y  /\  y  <_  z ) ) )
13171, 129, 130syl2an 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( y  e.  ( B [,] z )  <-> 
( y  e.  RR  /\  B  <_  y  /\  y  <_  z ) ) )
132131adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( y  e.  ( B [,] z
)  <->  ( y  e.  RR  /\  B  <_ 
y  /\  y  <_  z ) ) )
133126, 127, 128, 132mpbir3and 1180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  e.  ( B [,] z ) )
134 iccsplit 11663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR  /\  z  e.  RR  /\  y  e.  ( B [,] z
) )  ->  ( B [,] z )  =  ( ( B [,] y )  u.  (
y [,] z ) ) )
135124, 125, 133, 134syl3anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( B [,] z )  =  ( ( B [,] y
)  u.  ( y [,] z ) ) )
136 eqimss 3541 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B [,] z )  =  ( ( B [,] y )  u.  ( y [,] z
) )  ->  ( B [,] z )  C_  ( ( B [,] y )  u.  (
y [,] z ) ) )
137135, 136syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( B [,] z )  C_  (
( B [,] y
)  u.  ( y [,] z ) ) )
13880adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  y  e.  RR )
13963adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  z  e.  RR )
140 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  y  <_  B )
141139leidd 10126 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  z  <_  z )
142 iccss 11602 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  RR  /\  z  e.  RR )  /\  ( y  <_  B  /\  z  <_  z
) )  ->  ( B [,] z )  C_  ( y [,] z
) )
143138, 139, 140, 141, 142syl22anc 1230 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  ( B [,] z )  C_  (
y [,] z ) )
144 ssun4 3655 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B [,] z ) 
C_  ( y [,] z )  ->  ( B [,] z )  C_  ( ( B [,] y )  u.  (
y [,] z ) ) )
145143, 144syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  ( B [,] z )  C_  (
( B [,] y
)  u.  ( y [,] z ) ) )
14672, 80, 137, 145lecasei 9693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] z
)  C_  ( ( B [,] y )  u.  ( y [,] z
) ) )
147 sslin 3709 . . . . . . . . . . . . . . . . 17  |-  ( ( B [,] z ) 
C_  ( ( B [,] y )  u.  ( y [,] z
) )  ->  ( A  i^i  ( B [,] z ) )  C_  ( A  i^i  (
( B [,] y
)  u.  ( y [,] z ) ) ) )
148146, 147syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  ( A  i^i  ( ( B [,] y )  u.  (
y [,] z ) ) ) )
149 indi 3729 . . . . . . . . . . . . . . . . 17  |-  ( A  i^i  ( ( B [,] y )  u.  ( y [,] z
) ) )  =  ( ( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z ) ) )
150 inss2 3704 . . . . . . . . . . . . . . . . . 18  |-  ( A  i^i  ( y [,] z ) )  C_  ( y [,] z
)
151 unss2 3660 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  i^i  ( y [,] z ) ) 
C_  ( y [,] z )  ->  (
( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )
152150, 151ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )
153149, 152eqsstri 3519 . . . . . . . . . . . . . . . 16  |-  ( A  i^i  ( ( B [,] y )  u.  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )
154148, 153syl6ss 3501 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) ) )
155 ovolss 21873 . . . . . . . . . . . . . . 15  |-  ( ( ( A  i^i  ( B [,] z ) ) 
C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) )  /\  (
( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )  C_  RR )  ->  ( vol* `  ( A  i^i  ( B [,] z
) ) )  <_ 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) ) )
156154, 110, 155syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] z ) ) )  <_  ( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) ) ) )
15798, 123, 114, 156, 121letrd 9742 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) )
15898, 112, 113lesubadd2d 10158 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( ( vol* `  ( A  i^i  ( B [,] z
) ) )  -  ( vol* `  ( A  i^i  ( B [,] y ) ) ) )  <_  ( z  -  y )  <->  ( vol* `  ( A  i^i  ( B [,] z ) ) )  <_  (
( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) ) )
159157, 158mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol* `  ( A  i^i  ( B [,] z ) ) )  -  ( vol* `  ( A  i^i  ( B [,] y
) ) ) )  <_  ( z  -  y ) )
16095, 159eqbrtrd 4457 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  <_  ( z  -  y ) )
16197, 111resubcld 9994 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  e.  RR )
162 simplr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
e  e.  RR+ )
163162rpred 11266 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
e  e.  RR )
164 lelttr 9678 . . . . . . . . . . . 12  |-  ( ( ( ( F `  z )  -  ( F `  y )
)  e.  RR  /\  ( z  -  y
)  e.  RR  /\  e  e.  RR )  ->  ( ( ( ( F `  z )  -  ( F `  y ) )  <_ 
( z  -  y
)  /\  ( z  -  y )  < 
e )  ->  (
( F `  z
)  -  ( F `
 y ) )  <  e ) )
165161, 113, 163, 164syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( ( ( F `  z )  -  ( F `  y ) )  <_ 
( z  -  y
)  /\  ( z  -  y )  < 
e )  ->  (
( F `  z
)  -  ( F `
 y ) )  <  e ) )
166160, 165mpand 675 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( z  -  y )  <  e  ->  ( ( F `  z )  -  ( F `  y )
)  <  e )
)
167 abssubge0 13141 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( abs `  ( z  -  y ) )  =  ( z  -  y
) )
168167adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( abs `  (
z  -  y ) )  =  ( z  -  y ) )
169168breq1d 4447 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
z  -  y ) )  <  e  <->  ( z  -  y )  < 
e ) )
170 ovolss 21873 . . . . . . . . . . . . . 14  |-  ( ( ( A  i^i  ( B [,] y ) ) 
C_  ( A  i^i  ( B [,] z ) )  /\  ( A  i^i  ( B [,] z ) )  C_  RR )  ->  ( vol* `  ( A  i^i  ( B [,] y
) ) )  <_ 
( vol* `  ( A  i^i  ( B [,] z ) ) ) )
171104, 106, 170syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] y ) ) )  <_  ( vol* `  ( A  i^i  ( B [,] z ) ) ) )
172171, 94, 793brtr4d 4467 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  <_  ( F `  z ) )
173111, 97, 172abssubge0d 13244 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( ( F `  z )  -  ( F `  y ) ) )
174173breq1d 4447 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e  <->  ( ( F `  z )  -  ( F `  y ) )  < 
e ) )
175166, 169, 1743imtr4d 268 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
17632, 42, 44, 62, 175wlogle 10093 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( z  -  y ) )  < 
e  ->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  <  e
) )
177176anassrs 648 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
178177ralrimiva 2857 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  y  e.  RR )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
179178anasss 647 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( e  e.  RR+  /\  y  e.  RR ) )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
180179ancom2s 802 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
181 breq2 4441 . . . . . . 7  |-  ( d  =  e  ->  (
( abs `  (
z  -  y ) )  <  d  <->  ( abs `  ( z  -  y
) )  <  e
) )
182181imbi1d 317 . . . . . 6  |-  ( d  =  e  ->  (
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
183182ralbidv 2882 . . . . 5  |-  ( d  =  e  ->  ( A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <->  A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
184183rspcev 3196 . . . 4  |-  ( ( e  e.  RR+  /\  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
18522, 180, 184syl2anc 661 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
186185ralrimivva 2864 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
187 ax-resscn 9552 . . 3  |-  RR  C_  CC
188 elcncf2 21371 . . 3  |-  ( ( RR  C_  CC  /\  RR  C_  CC )  ->  ( F  e.  ( RR -cn-> RR )  <->  ( F : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) ) )
189187, 187, 188mp2an 672 . 2  |-  ( F  e.  ( RR -cn-> RR )  <->  ( F : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
19021, 186, 189sylanbrc 664 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F  e.  ( RR -cn-> RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794    u. cun 3459    i^i cin 3460    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810   RR+crp 11230   [,]cicc 11542   abscabs 13048   -cn->ccncf 21357   vol*covol 21851   volcvol 21852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11092  df-q 11193  df-rp 11231  df-xneg 11328  df-xadd 11329  df-xmul 11330  df-ioo 11543  df-ico 11545  df-icc 11546  df-fz 11683  df-fzo 11806  df-fl 11910  df-seq 12089  df-exp 12148  df-hash 12387  df-cj 12913  df-re 12914  df-im 12915  df-sqrt 13049  df-abs 13050  df-clim 13292  df-rlim 13293  df-sum 13490  df-rest 14801  df-topgen 14822  df-psmet 18389  df-xmet 18390  df-met 18391  df-bl 18392  df-mopn 18393  df-top 19376  df-bases 19378  df-topon 19379  df-cmp 19864  df-cncf 21359  df-ovol 21853  df-vol 21854
This theorem is referenced by:  volivth  21993
  Copyright terms: Public domain W3C validator