MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Structured version   Unicode version

Theorem volcn 22197
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1  |-  F  =  ( x  e.  RR  |->  ( vol `  ( A  i^i  ( B [,] x ) ) ) )
Assertion
Ref Expression
volcn  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F  e.  ( RR -cn-> RR ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem volcn
Dummy variables  u  e  v  y  z 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 752 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  A  e.  dom  vol )
2 iccmbl 22158 . . . . . . 7  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B [,] x
)  e.  dom  vol )
32adantll 712 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( B [,] x )  e.  dom  vol )
4 inmbl 22134 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( B [,] x
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] x ) )  e.  dom  vol )
51, 3, 4syl2anc 659 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( A  i^i  ( B [,] x ) )  e.  dom  vol )
6 mblvol 22123 . . . . 5  |-  ( ( A  i^i  ( B [,] x ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol* `  ( A  i^i  ( B [,] x ) ) ) )
75, 6syl 17 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol* `  ( A  i^i  ( B [,] x ) ) ) )
8 inss2 3657 . . . . . 6  |-  ( A  i^i  ( B [,] x ) )  C_  ( B [,] x )
98a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( A  i^i  ( B [,] x ) )  C_  ( B [,] x ) )
10 mblss 22124 . . . . . 6  |-  ( ( B [,] x )  e.  dom  vol  ->  ( B [,] x ) 
C_  RR )
113, 10syl 17 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( B [,] x )  C_  RR )
12 mblvol 22123 . . . . . . 7  |-  ( ( B [,] x )  e.  dom  vol  ->  ( vol `  ( B [,] x ) )  =  ( vol* `  ( B [,] x
) ) )
133, 12syl 17 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  =  ( vol* `  ( B [,] x
) ) )
14 iccvolcl 22159 . . . . . . 7  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  e.  RR )
1514adantll 712 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  e.  RR )
1613, 15eqeltrrd 2489 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol* `  ( B [,] x
) )  e.  RR )
17 ovolsscl 22079 . . . . 5  |-  ( ( ( A  i^i  ( B [,] x ) ) 
C_  ( B [,] x )  /\  ( B [,] x )  C_  RR  /\  ( vol* `  ( B [,] x
) )  e.  RR )  ->  ( vol* `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
189, 11, 16, 17syl3anc 1228 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol* `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
197, 18eqeltrd 2488 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
20 volcn.1 . . 3  |-  F  =  ( x  e.  RR  |->  ( vol `  ( A  i^i  ( B [,] x ) ) ) )
2119, 20fmptd 5987 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F : RR --> RR )
22 simprr 756 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  e  e.  RR+ )
23 oveq12 6241 . . . . . . . . . . . . 13  |-  ( ( v  =  z  /\  u  =  y )  ->  ( v  -  u
)  =  ( z  -  y ) )
2423ancoms 451 . . . . . . . . . . . 12  |-  ( ( u  =  y  /\  v  =  z )  ->  ( v  -  u
)  =  ( z  -  y ) )
2524fveq2d 5807 . . . . . . . . . . 11  |-  ( ( u  =  y  /\  v  =  z )  ->  ( abs `  (
v  -  u ) )  =  ( abs `  ( z  -  y
) ) )
2625breq1d 4402 . . . . . . . . . 10  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( abs `  (
v  -  u ) )  <  e  <->  ( abs `  ( z  -  y
) )  <  e
) )
27 fveq2 5803 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  ( F `  v )  =  ( F `  z ) )
28 fveq2 5803 . . . . . . . . . . . . 13  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
2927, 28oveqan12rd 6252 . . . . . . . . . . . 12  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( F `  v )  -  ( F `  u )
)  =  ( ( F `  z )  -  ( F `  y ) ) )
3029fveq2d 5807 . . . . . . . . . . 11  |-  ( ( u  =  y  /\  v  =  z )  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  =  ( abs `  ( ( F `  z )  -  ( F `  y )
) ) )
3130breq1d 4402 . . . . . . . . . 10  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e  <->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  <  e
) )
3226, 31imbi12d 318 . . . . . . . . 9  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( ( abs `  ( v  -  u
) )  <  e  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
33 oveq12 6241 . . . . . . . . . . . . 13  |-  ( ( v  =  y  /\  u  =  z )  ->  ( v  -  u
)  =  ( y  -  z ) )
3433ancoms 451 . . . . . . . . . . . 12  |-  ( ( u  =  z  /\  v  =  y )  ->  ( v  -  u
)  =  ( y  -  z ) )
3534fveq2d 5807 . . . . . . . . . . 11  |-  ( ( u  =  z  /\  v  =  y )  ->  ( abs `  (
v  -  u ) )  =  ( abs `  ( y  -  z
) ) )
3635breq1d 4402 . . . . . . . . . 10  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( abs `  (
v  -  u ) )  <  e  <->  ( abs `  ( y  -  z
) )  <  e
) )
37 fveq2 5803 . . . . . . . . . . . . 13  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
38 fveq2 5803 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  ( F `  u )  =  ( F `  z ) )
3937, 38oveqan12rd 6252 . . . . . . . . . . . 12  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( F `  v )  -  ( F `  u )
)  =  ( ( F `  y )  -  ( F `  z ) ) )
4039fveq2d 5807 . . . . . . . . . . 11  |-  ( ( u  =  z  /\  v  =  y )  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
4140breq1d 4402 . . . . . . . . . 10  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e  <->  ( abs `  ( ( F `  y )  -  ( F `  z )
) )  <  e
) )
4236, 41imbi12d 318 . . . . . . . . 9  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( ( abs `  ( v  -  u
) )  <  e  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  e  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  e ) ) )
43 ssid 3458 . . . . . . . . . 10  |-  RR  C_  RR
4443a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  RR  C_  RR )
45 recn 9530 . . . . . . . . . . . . 13  |-  ( z  e.  RR  ->  z  e.  CC )
46 recn 9530 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  y  e.  CC )
47 abssub 13213 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
z  -  y ) )  =  ( abs `  ( y  -  z
) ) )
4845, 46, 47syl2anr 476 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( abs `  (
z  -  y ) )  =  ( abs `  ( y  -  z
) ) )
4948adantl 464 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( abs `  ( z  -  y
) )  =  ( abs `  ( y  -  z ) ) )
5049breq1d 4402 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( z  -  y ) )  < 
e  <->  ( abs `  (
y  -  z ) )  <  e ) )
5121adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  F : RR --> RR )
52 ffvelrn 5961 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  y  e.  RR )  ->  ( F `  y
)  e.  RR )
53 ffvelrn 5961 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  z  e.  RR )  ->  ( F `  z
)  e.  RR )
5452, 53anim12dan 836 . . . . . . . . . . . . 13  |-  ( ( F : RR --> RR  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  RR  /\  ( F `
 z )  e.  RR ) )
5551, 54sylan 469 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( F `  y )  e.  RR  /\  ( F `
 z )  e.  RR ) )
56 recn 9530 . . . . . . . . . . . . 13  |-  ( ( F `  z )  e.  RR  ->  ( F `  z )  e.  CC )
57 recn 9530 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e.  RR  ->  ( F `  y )  e.  CC )
58 abssub 13213 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  y )  e.  CC )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
5956, 57, 58syl2anr 476 . . . . . . . . . . . 12  |-  ( ( ( F `  y
)  e.  RR  /\  ( F `  z )  e.  RR )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
6055, 59syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  =  ( abs `  ( ( F `  y )  -  ( F `  z ) ) ) )
6160breq1d 4402 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( ( F `
 z )  -  ( F `  y ) ) )  <  e  <->  ( abs `  ( ( F `  y )  -  ( F `  z ) ) )  <  e ) )
6250, 61imbi12d 318 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  e  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  e ) ) )
63 simpr2 1002 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
z  e.  RR )
64 oveq2 6240 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  ( B [,] x )  =  ( B [,] z
) )
6564ineq2d 3638 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  ( A  i^i  ( B [,] x ) )  =  ( A  i^i  ( B [,] z ) ) )
6665fveq2d 5807 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
67 fvex 5813 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( A  i^i  ( B [,] z ) ) )  e.  _V
6866, 20, 67fvmpt 5886 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
6963, 68syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
70 simplll 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  A  e.  dom  vol )
71 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  B  e.  RR )
7271adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  B  e.  RR )
73 iccmbl 22158 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  z  e.  RR )  ->  ( B [,] z
)  e.  dom  vol )
7472, 63, 73syl2anc 659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] z
)  e.  dom  vol )
75 inmbl 22134 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  ( B [,] z
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] z ) )  e.  dom  vol )
7670, 74, 75syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) )  e.  dom  vol )
77 mblvol 22123 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( B [,] z ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] z ) ) )  =  ( vol* `  ( A  i^i  ( B [,] z ) ) ) )
7876, 77syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol `  ( A  i^i  ( B [,] z ) ) )  =  ( vol* `  ( A  i^i  ( B [,] z ) ) ) )
7969, 78eqtrd 2441 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  =  ( vol* `  ( A  i^i  ( B [,] z
) ) ) )
80 simpr1 1001 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
y  e.  RR )
81 oveq2 6240 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( B [,] x )  =  ( B [,] y
) )
8281ineq2d 3638 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( A  i^i  ( B [,] x ) )  =  ( A  i^i  ( B [,] y ) ) )
8382fveq2d 5807 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
84 fvex 5813 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( A  i^i  ( B [,] y ) ) )  e.  _V
8583, 20, 84fvmpt 5886 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
8680, 85syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
87 simp1 995 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  y  e.  RR )
88 iccmbl 22158 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  y  e.  RR )  ->  ( B [,] y
)  e.  dom  vol )
8971, 87, 88syl2an 475 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] y
)  e.  dom  vol )
90 inmbl 22134 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  ( B [,] y
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] y ) )  e.  dom  vol )
9170, 89, 90syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) )  e.  dom  vol )
92 mblvol 22123 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( B [,] y ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] y ) ) )  =  ( vol* `  ( A  i^i  ( B [,] y ) ) ) )
9391, 92syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol `  ( A  i^i  ( B [,] y ) ) )  =  ( vol* `  ( A  i^i  ( B [,] y ) ) ) )
9486, 93eqtrd 2441 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  =  ( vol* `  ( A  i^i  ( B [,] y
) ) ) )
9579, 94oveq12d 6250 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  =  ( ( vol* `  ( A  i^i  ( B [,] z ) ) )  -  ( vol* `  ( A  i^i  ( B [,] y ) ) ) ) )
9651adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  F : RR --> RR )
9796, 63ffvelrnd 5964 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  e.  RR )
9879, 97eqeltrrd 2489 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] z ) ) )  e.  RR )
9972leidd 10077 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  B  <_  B )
100 simpr3 1003 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
y  <_  z )
101 iccss 11561 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  RR  /\  z  e.  RR )  /\  ( B  <_  B  /\  y  <_  z
) )  ->  ( B [,] y )  C_  ( B [,] z ) )
10272, 63, 99, 100, 101syl22anc 1229 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] y
)  C_  ( B [,] z ) )
103 sslin 3662 . . . . . . . . . . . . . . . . . 18  |-  ( ( B [,] y ) 
C_  ( B [,] z )  ->  ( A  i^i  ( B [,] y ) )  C_  ( A  i^i  ( B [,] z ) ) )
104102, 103syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) ) 
C_  ( A  i^i  ( B [,] z ) ) )
105 mblss 22124 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  i^i  ( B [,] z ) )  e.  dom  vol  ->  ( A  i^i  ( B [,] z ) ) 
C_  RR )
10676, 105syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  RR )
107104, 106sstrd 3449 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) ) 
C_  RR )
108 iccssre 11575 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y [,] z
)  C_  RR )
10980, 63, 108syl2anc 659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( y [,] z
)  C_  RR )
110107, 109unssd 3616 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) 
C_  RR )
11196, 80ffvelrnd 5964 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  e.  RR )
11294, 111eqeltrrd 2489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] y ) ) )  e.  RR )
11363, 80resubcld 9946 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( z  -  y
)  e.  RR )
114112, 113readdcld 9571 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) )  e.  RR )
115 ovolicc 22116 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( vol* `  ( y [,] z ) )  =  ( z  -  y ) )
116115adantl 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( y [,] z
) )  =  ( z  -  y ) )
117116, 113eqeltrd 2488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( y [,] z
) )  e.  RR )
118 ovolun 22092 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  i^i  ( B [,] y ) )  C_  RR  /\  ( vol* `  ( A  i^i  ( B [,] y ) ) )  e.  RR )  /\  ( ( y [,] z )  C_  RR  /\  ( vol* `  ( y [,] z
) )  e.  RR ) )  ->  ( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y
) ) )  +  ( vol* `  ( y [,] z
) ) ) )
119107, 112, 109, 117, 118syl22anc 1229 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( vol* `  ( y [,] z
) ) ) )
120116oveq2d 6248 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( vol* `  ( y [,] z ) ) )  =  ( ( vol* `  ( A  i^i  ( B [,] y
) ) )  +  ( z  -  y
) ) )
121119, 120breqtrd 4416 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) )
122 ovollecl 22076 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) 
C_  RR  /\  (
( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) )  e.  RR  /\  ( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y
) ) )  +  ( z  -  y
) ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  e.  RR )
123110, 114, 121, 122syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  e.  RR )
12472adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  B  e.  RR )
12563adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  z  e.  RR )
12680adantr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  e.  RR )
127 simpr 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  B  <_  y )
128100adantr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  <_  z )
129 simp2 996 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  z  e.  RR )
130 elicc2 11558 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  RR  /\  z  e.  RR )  ->  ( y  e.  ( B [,] z )  <-> 
( y  e.  RR  /\  B  <_  y  /\  y  <_  z ) ) )
13171, 129, 130syl2an 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( y  e.  ( B [,] z )  <-> 
( y  e.  RR  /\  B  <_  y  /\  y  <_  z ) ) )
132131adantr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( y  e.  ( B [,] z
)  <->  ( y  e.  RR  /\  B  <_ 
y  /\  y  <_  z ) ) )
133126, 127, 128, 132mpbir3and 1178 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  e.  ( B [,] z ) )
134 iccsplit 11622 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR  /\  z  e.  RR  /\  y  e.  ( B [,] z
) )  ->  ( B [,] z )  =  ( ( B [,] y )  u.  (
y [,] z ) ) )
135124, 125, 133, 134syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( B [,] z )  =  ( ( B [,] y
)  u.  ( y [,] z ) ) )
136 eqimss 3491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B [,] z )  =  ( ( B [,] y )  u.  ( y [,] z
) )  ->  ( B [,] z )  C_  ( ( B [,] y )  u.  (
y [,] z ) ) )
137135, 136syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( B [,] z )  C_  (
( B [,] y
)  u.  ( y [,] z ) ) )
13880adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  y  e.  RR )
13963adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  z  e.  RR )
140 simpr 459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  y  <_  B )
141139leidd 10077 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  z  <_  z )
142 iccss 11561 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  RR  /\  z  e.  RR )  /\  ( y  <_  B  /\  z  <_  z
) )  ->  ( B [,] z )  C_  ( y [,] z
) )
143138, 139, 140, 141, 142syl22anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  ( B [,] z )  C_  (
y [,] z ) )
144 ssun4 3606 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B [,] z ) 
C_  ( y [,] z )  ->  ( B [,] z )  C_  ( ( B [,] y )  u.  (
y [,] z ) ) )
145143, 144syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  ( B [,] z )  C_  (
( B [,] y
)  u.  ( y [,] z ) ) )
14672, 80, 137, 145lecasei 9640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] z
)  C_  ( ( B [,] y )  u.  ( y [,] z
) ) )
147 sslin 3662 . . . . . . . . . . . . . . . . 17  |-  ( ( B [,] z ) 
C_  ( ( B [,] y )  u.  ( y [,] z
) )  ->  ( A  i^i  ( B [,] z ) )  C_  ( A  i^i  (
( B [,] y
)  u.  ( y [,] z ) ) ) )
148146, 147syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  ( A  i^i  ( ( B [,] y )  u.  (
y [,] z ) ) ) )
149 indi 3693 . . . . . . . . . . . . . . . . 17  |-  ( A  i^i  ( ( B [,] y )  u.  ( y [,] z
) ) )  =  ( ( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z ) ) )
150 inss2 3657 . . . . . . . . . . . . . . . . . 18  |-  ( A  i^i  ( y [,] z ) )  C_  ( y [,] z
)
151 unss2 3611 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  i^i  ( y [,] z ) ) 
C_  ( y [,] z )  ->  (
( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )
152150, 151ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )
153149, 152eqsstri 3469 . . . . . . . . . . . . . . . 16  |-  ( A  i^i  ( ( B [,] y )  u.  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )
154148, 153syl6ss 3451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) ) )
155 ovolss 22078 . . . . . . . . . . . . . . 15  |-  ( ( ( A  i^i  ( B [,] z ) ) 
C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) )  /\  (
( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )  C_  RR )  ->  ( vol* `  ( A  i^i  ( B [,] z
) ) )  <_ 
( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) ) )
156154, 110, 155syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] z ) ) )  <_  ( vol* `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) ) ) )
15798, 123, 114, 156, 121letrd 9691 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] z ) ) )  <_  ( ( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) )
15898, 112, 113lesubadd2d 10109 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( ( vol* `  ( A  i^i  ( B [,] z
) ) )  -  ( vol* `  ( A  i^i  ( B [,] y ) ) ) )  <_  ( z  -  y )  <->  ( vol* `  ( A  i^i  ( B [,] z ) ) )  <_  (
( vol* `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) ) )
159157, 158mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol* `  ( A  i^i  ( B [,] z ) ) )  -  ( vol* `  ( A  i^i  ( B [,] y
) ) ) )  <_  ( z  -  y ) )
16095, 159eqbrtrd 4412 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  <_  ( z  -  y ) )
16197, 111resubcld 9946 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  e.  RR )
162 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
e  e.  RR+ )
163162rpred 11220 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
e  e.  RR )
164 lelttr 9624 . . . . . . . . . . . 12  |-  ( ( ( ( F `  z )  -  ( F `  y )
)  e.  RR  /\  ( z  -  y
)  e.  RR  /\  e  e.  RR )  ->  ( ( ( ( F `  z )  -  ( F `  y ) )  <_ 
( z  -  y
)  /\  ( z  -  y )  < 
e )  ->  (
( F `  z
)  -  ( F `
 y ) )  <  e ) )
165161, 113, 163, 164syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( ( ( F `  z )  -  ( F `  y ) )  <_ 
( z  -  y
)  /\  ( z  -  y )  < 
e )  ->  (
( F `  z
)  -  ( F `
 y ) )  <  e ) )
166160, 165mpand 673 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( z  -  y )  <  e  ->  ( ( F `  z )  -  ( F `  y )
)  <  e )
)
167 abssubge0 13214 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( abs `  ( z  -  y ) )  =  ( z  -  y
) )
168167adantl 464 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( abs `  (
z  -  y ) )  =  ( z  -  y ) )
169168breq1d 4402 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
z  -  y ) )  <  e  <->  ( z  -  y )  < 
e ) )
170 ovolss 22078 . . . . . . . . . . . . . 14  |-  ( ( ( A  i^i  ( B [,] y ) ) 
C_  ( A  i^i  ( B [,] z ) )  /\  ( A  i^i  ( B [,] z ) )  C_  RR )  ->  ( vol* `  ( A  i^i  ( B [,] y
) ) )  <_ 
( vol* `  ( A  i^i  ( B [,] z ) ) ) )
171104, 106, 170syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol* `  ( A  i^i  ( B [,] y ) ) )  <_  ( vol* `  ( A  i^i  ( B [,] z ) ) ) )
172171, 94, 793brtr4d 4422 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  <_  ( F `  z ) )
173111, 97, 172abssubge0d 13317 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( ( F `  z )  -  ( F `  y ) ) )
174173breq1d 4402 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e  <->  ( ( F `  z )  -  ( F `  y ) )  < 
e ) )
175166, 169, 1743imtr4d 268 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
17632, 42, 44, 62, 175wlogle 10044 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( z  -  y ) )  < 
e  ->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  <  e
) )
177176anassrs 646 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
178177ralrimiva 2815 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  y  e.  RR )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
179178anasss 645 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( e  e.  RR+  /\  y  e.  RR ) )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
180179ancom2s 801 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
181 breq2 4396 . . . . . . 7  |-  ( d  =  e  ->  (
( abs `  (
z  -  y ) )  <  d  <->  ( abs `  ( z  -  y
) )  <  e
) )
182181imbi1d 315 . . . . . 6  |-  ( d  =  e  ->  (
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
183182ralbidv 2840 . . . . 5  |-  ( d  =  e  ->  ( A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <->  A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
184183rspcev 3157 . . . 4  |-  ( ( e  e.  RR+  /\  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
18522, 180, 184syl2anc 659 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
186185ralrimivva 2822 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
187 ax-resscn 9497 . . 3  |-  RR  C_  CC
188 elcncf2 21576 . . 3  |-  ( ( RR  C_  CC  /\  RR  C_  CC )  ->  ( F  e.  ( RR -cn-> RR )  <->  ( F : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) ) )
189187, 187, 188mp2an 670 . 2  |-  ( F  e.  ( RR -cn-> RR )  <->  ( F : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
19021, 186, 189sylanbrc 662 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F  e.  ( RR -cn-> RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840   A.wral 2751   E.wrex 2752    u. cun 3409    i^i cin 3410    C_ wss 3411   class class class wbr 4392    |-> cmpt 4450   dom cdm 4940   -->wf 5519   ` cfv 5523  (class class class)co 6232   CCcc 9438   RRcr 9439    + caddc 9443    < clt 9576    <_ cle 9577    - cmin 9759   RR+crp 11181   [,]cicc 11501   abscabs 13121   -cn->ccncf 21562   vol*covol 22056   volcvol 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-inf2 8009  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517  ax-pre-sup 9518
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-fal 1409  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-isom 5532  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-of 6475  df-om 6637  df-1st 6736  df-2nd 6737  df-recs 6997  df-rdg 7031  df-1o 7085  df-2o 7086  df-oadd 7089  df-er 7266  df-map 7377  df-pm 7378  df-en 7473  df-dom 7474  df-sdom 7475  df-fin 7476  df-fi 7823  df-sup 7853  df-oi 7887  df-card 8270  df-cda 8498  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-2 10553  df-3 10554  df-n0 10755  df-z 10824  df-uz 11044  df-q 11144  df-rp 11182  df-xneg 11287  df-xadd 11288  df-xmul 11289  df-ioo 11502  df-ico 11504  df-icc 11505  df-fz 11642  df-fzo 11766  df-fl 11877  df-seq 12060  df-exp 12119  df-hash 12358  df-cj 12986  df-re 12987  df-im 12988  df-sqrt 13122  df-abs 13123  df-clim 13365  df-rlim 13366  df-sum 13563  df-rest 14927  df-topgen 14948  df-psmet 18621  df-xmet 18622  df-met 18623  df-bl 18624  df-mopn 18625  df-top 19581  df-bases 19583  df-topon 19584  df-cmp 20070  df-cncf 21564  df-ovol 22058  df-vol 22059
This theorem is referenced by:  volivth  22198
  Copyright terms: Public domain W3C validator