Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vn0 Structured version   Unicode version

Theorem vn0 3746
 Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
vn0

Proof of Theorem vn0
StepHypRef Expression
1 vex 3062 . 2
21ne0ii 3745 1
 Colors of variables: wff setvar class Syntax hints:   wne 2598  cvv 3059  c0 3738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-v 3061  df-dif 3417  df-nul 3739 This theorem is referenced by:  uniintsn  4265  relrelss  5347  imasaddfnlem  15142  imasvscafn  15151  cmpfi  20201  fclscmp  20823  compne  36197
 Copyright terms: Public domain W3C validator