MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmasum Structured version   Visualization version   Unicode version

Theorem vmasum 24200
Description: The sum of the von Mangoldt function over the divisors of  n. Equation 9.2.4 of [Shapiro], p. 328. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
vmasum  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Distinct variable group:    x, n, A

Proof of Theorem vmasum
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5892 . . 3  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
2 fzfid 12224 . . . 4  |-  ( A  e.  NN  ->  (
1 ... A )  e. 
Fin )
3 sgmss 24089 . . . 4  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A ) )
4 ssfi 7823 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A
) )  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
52, 3, 4syl2anc 671 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
6 ssrab2 3526 . . . 4  |-  { x  e.  NN  |  x  ||  A }  C_  NN
76a1i 11 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  NN )
8 inss1 3664 . . . 4  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
9 ssfi 7823 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A ) )  -> 
( ( 1 ... A )  i^i  Prime )  e.  Fin )
102, 8, 9sylancl 673 . . 3  |-  ( A  e.  NN  ->  (
( 1 ... A
)  i^i  Prime )  e. 
Fin )
11 pccl 14854 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p  pCnt  A )  e.  NN0 )
1211ancoms 459 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
1312nn0zd 11072 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  ZZ )
14 fznn 11898 . . . . . . . 8  |-  ( ( p  pCnt  A )  e.  ZZ  ->  ( k  e.  ( 1 ... (
p  pCnt  A )
)  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1513, 14syl 17 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( k  e.  ( 1 ... ( p 
pCnt  A ) )  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1615anbi2d 715 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) ) )
17 an12 811 . . . . . . 7  |-  ( ( p  e.  ( 1 ... A )  /\  ( k  e.  NN  /\  k  <_  ( p  pCnt  A ) ) )  <-> 
( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  (
p  pCnt  A )
) ) )
18 prmz 14681 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
1918adantl 472 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  ZZ )
20 iddvdsexp 14381 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  k  e.  NN )  ->  p  ||  ( p ^ k ) )
2119, 20sylan 478 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  ||  (
p ^ k ) )
2218ad2antlr 738 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  ZZ )
23 prmnn 14680 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  NN )
2423adantl 472 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
25 nnnn0 10910 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  NN0 )
26 nnexpcl 12323 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
2724, 25, 26syl2an 484 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  NN )
2827nnzd 11073 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  ZZ )
29 nnz 10993 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A  e.  ZZ )
3029ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  ZZ )
31 dvdstr 14392 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  ( p ^ k
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( p  ||  ( p ^ k
)  /\  ( p ^ k )  ||  A )  ->  p  ||  A ) )
3222, 28, 30, 31syl3anc 1276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p 
||  ( p ^
k )  /\  (
p ^ k ) 
||  A )  ->  p  ||  A ) )
3321, 32mpand 686 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  ||  A
) )
34 simpll 765 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  NN )
35 dvdsle 14405 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  A  e.  NN )  ->  ( p  ||  A  ->  p  <_  A )
)
3622, 34, 35syl2anc 671 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  ||  A  ->  p  <_  A
) )
3733, 36syld 45 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  <_  A
) )
3823ad2antlr 738 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  NN )
39 fznn 11898 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
p  e.  ( 1 ... A )  <->  ( p  e.  NN  /\  p  <_  A ) ) )
4039baibd 925 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  NN )  ->  ( p  e.  ( 1 ... A )  <-> 
p  <_  A )
)
4130, 38, 40syl2anc 671 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  e.  ( 1 ... A
)  <->  p  <_  A ) )
4237, 41sylibrd 242 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  e.  ( 1 ... A ) ) )
4342pm4.71rd 645 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A 
<->  ( p  e.  ( 1 ... A )  /\  ( p ^
k )  ||  A
) ) )
44 breq1 4421 . . . . . . . . . . 11  |-  ( x  =  ( p ^
k )  ->  (
x  ||  A  <->  ( p ^ k )  ||  A ) )
4544elrab3 3209 . . . . . . . . . 10  |-  ( ( p ^ k )  e.  NN  ->  (
( p ^ k
)  e.  { x  e.  NN  |  x  ||  A }  <->  ( p ^
k )  ||  A
) )
4627, 45syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }  <->  ( p ^ k ) 
||  A ) )
47 simplr 767 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  Prime )
4825adantl 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  k  e.  NN0 )
49 pcdvdsb 14873 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  k  e. 
NN0 )  ->  (
k  <_  ( p  pCnt  A )  <->  ( p ^ k )  ||  A ) )
5047, 30, 48, 49syl3anc 1276 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( k  <_ 
( p  pCnt  A
)  <->  ( p ^
k )  ||  A
) )
5150anbi2d 715 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( p ^ k )  ||  A ) ) )
5243, 46, 513bitr4rd 294 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) )
5352pm5.32da 651 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5417, 53syl5bb 265 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5516, 54bitrd 261 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5655pm5.32da 651 . . . 4  |-  ( A  e.  NN  ->  (
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) )  <->  ( p  e. 
Prime  /\  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) ) )
57 elin 3629 . . . . . 6  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( p  e.  ( 1 ... A
)  /\  p  e.  Prime ) )
5857anbi1i 706 . . . . 5  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( (
p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )
59 anass 659 . . . . 5  |-  ( ( ( p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) )  <-> 
( p  e.  ( 1 ... A )  /\  ( p  e. 
Prime  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
60 an12 811 . . . . 5  |-  ( ( p  e.  ( 1 ... A )  /\  ( p  e.  Prime  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )  <-> 
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
6158, 59, 603bitri 279 . . . 4  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  Prime  /\  ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) ) ) )
62 anass 659 . . . 4  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  {
x  e.  NN  |  x  ||  A } )  <-> 
( p  e.  Prime  /\  ( k  e.  NN  /\  ( p ^ k
)  e.  { x  e.  NN  |  x  ||  A } ) ) )
6356, 61, 623bitr4g 296 . . 3  |-  ( A  e.  NN  ->  (
( p  e.  ( ( 1 ... A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  { x  e.  NN  |  x  ||  A } ) ) )
647sselda 3444 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  n  e.  NN )
65 vmacl 24101 . . . . 5  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6664, 65syl 17 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  RR )
6766recnd 9700 . . 3  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  CC )
68 simprr 771 . . 3  |-  ( ( A  e.  NN  /\  ( n  e.  { x  e.  NN  |  x  ||  A }  /\  (Λ `  n )  =  0 ) )  ->  (Λ `  n )  =  0 )
691, 5, 7, 10, 63, 67, 68fsumvma 24197 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  = 
sum_ p  e.  (
( 1 ... A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) (Λ `  (
p ^ k ) ) )
7057simprbi 470 . . . . . . 7  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e. 
Prime )
7170ad2antlr 738 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  ->  p  e.  Prime )
72 elfznn 11863 . . . . . . 7  |-  ( k  e.  ( 1 ... ( p  pCnt  A
) )  ->  k  e.  NN )
7372adantl 472 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
k  e.  NN )
74 vmappw 24099 . . . . . 6  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
7571, 73, 74syl2anc 671 . . . . 5  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
7675sumeq2dv 13824 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) ( log `  p ) )
77 fzfid 12224 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
1 ... ( p  pCnt  A ) )  e.  Fin )
7870, 23syl 17 . . . . . . . . 9  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e.  NN )
7978adantl 472 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  NN )
8079nnrpd 11373 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  RR+ )
8180relogcld 23628 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  RR )
8281recnd 9700 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  CC )
83 fsumconst 13906 . . . . 5  |-  ( ( ( 1 ... (
p  pCnt  A )
)  e.  Fin  /\  ( log `  p )  e.  CC )  ->  sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) ( log `  p )  =  ( ( # `  (
1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) ) )
8477, 82, 83syl2anc 671 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) ( log `  p
)  =  ( (
# `  ( 1 ... ( p  pCnt  A
) ) )  x.  ( log `  p
) ) )
8570, 12sylan2 481 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p  pCnt  A )  e.  NN0 )
86 hashfz1 12567 . . . . . 6  |-  ( ( p  pCnt  A )  e.  NN0  ->  ( # `  (
1 ... ( p  pCnt  A ) ) )  =  ( p  pCnt  A
) )
8785, 86syl 17 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( # `
 ( 1 ... ( p  pCnt  A
) ) )  =  ( p  pCnt  A
) )
8887oveq1d 6335 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
( # `  ( 1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) )  =  ( ( p  pCnt  A
)  x.  ( log `  p ) ) )
8976, 84, 883eqtrd 2500 . . 3  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
9089sumeq2dv 13824 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) (Λ `  ( p ^ k
) )  =  sum_ p  e.  ( ( 1 ... A )  i^i 
Prime ) ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
91 pclogsum 24199 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) )  =  ( log `  A
) )
9269, 90, 913eqtrd 2500 1  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898   {crab 2753    i^i cin 3415    C_ wss 3416   class class class wbr 4418   ` cfv 5605  (class class class)co 6320   Fincfn 7600   CCcc 9568   RRcr 9569   0cc0 9570   1c1 9571    x. cmul 9575    <_ cle 9707   NNcn 10642   NN0cn0 10903   ZZcz 10971   ...cfz 11819   ^cexp 12310   #chash 12553   sum_csu 13807    || cdvds 14360   Primecprime 14677    pCnt cpc 14841   logclog 23560  Λcvma 24074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-inf2 8177  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647  ax-pre-sup 9648  ax-addf 9649  ax-mulf 9650
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-se 4816  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-isom 5614  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-of 6563  df-om 6725  df-1st 6825  df-2nd 6826  df-supp 6947  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-2o 7214  df-oadd 7217  df-er 7394  df-map 7505  df-pm 7506  df-ixp 7554  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-fsupp 7915  df-fi 7956  df-sup 7987  df-inf 7988  df-oi 8056  df-card 8404  df-cda 8629  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-div 10303  df-nn 10643  df-2 10701  df-3 10702  df-4 10703  df-5 10704  df-6 10705  df-7 10706  df-8 10707  df-9 10708  df-10 10709  df-n0 10904  df-z 10972  df-dec 11086  df-uz 11194  df-q 11299  df-rp 11337  df-xneg 11443  df-xadd 11444  df-xmul 11445  df-ioo 11673  df-ioc 11674  df-ico 11675  df-icc 11676  df-fz 11820  df-fzo 11953  df-fl 12066  df-mod 12135  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13185  df-cj 13217  df-re 13218  df-im 13219  df-sqrt 13353  df-abs 13354  df-limsup 13581  df-clim 13607  df-rlim 13608  df-sum 13808  df-ef 14176  df-sin 14178  df-cos 14179  df-pi 14181  df-dvds 14361  df-gcd 14524  df-prm 14678  df-pc 14842  df-struct 15178  df-ndx 15179  df-slot 15180  df-base 15181  df-sets 15182  df-ress 15183  df-plusg 15258  df-mulr 15259  df-starv 15260  df-sca 15261  df-vsca 15262  df-ip 15263  df-tset 15264  df-ple 15265  df-ds 15267  df-unif 15268  df-hom 15269  df-cco 15270  df-rest 15376  df-topn 15377  df-0g 15395  df-gsum 15396  df-topgen 15397  df-pt 15398  df-prds 15401  df-xrs 15455  df-qtop 15461  df-imas 15462  df-xps 15465  df-mre 15547  df-mrc 15548  df-acs 15550  df-mgm 16543  df-sgrp 16582  df-mnd 16592  df-submnd 16638  df-mulg 16731  df-cntz 17026  df-cmn 17487  df-psmet 19017  df-xmet 19018  df-met 19019  df-bl 19020  df-mopn 19021  df-fbas 19022  df-fg 19023  df-cnfld 19026  df-top 19976  df-bases 19977  df-topon 19978  df-topsp 19979  df-cld 20089  df-ntr 20090  df-cls 20091  df-nei 20169  df-lp 20207  df-perf 20208  df-cn 20298  df-cnp 20299  df-haus 20386  df-tx 20632  df-hmeo 20825  df-fil 20916  df-fm 21008  df-flim 21009  df-flf 21010  df-xms 21390  df-ms 21391  df-tms 21392  df-cncf 21965  df-limc 22877  df-dv 22878  df-log 23562  df-vma 24080
This theorem is referenced by:  logfac2  24201  dchrvmasumlem1  24389  vmalogdivsum2  24432  logsqvma  24436
  Copyright terms: Public domain W3C validator