MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Structured version   Visualization version   Unicode version

Theorem vmalogdivsum2 24425
Description: The sum  sum_ n  <_  x , Λ ( n ) log ( x  /  n )  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem vmalogdivsum2
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12218 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 11857 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
32adantl 472 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
43nnrpd 11368 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
54relogcld 23621 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  k )  e.  RR )
65, 3nndivred 10686 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  e.  RR )
71, 6fsumrecl 13849 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  RR )
87recnd 9695 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  CC )
9 elioore 11695 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
109adantl 472 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
11 1rp 11335 . . . . . . . . . . . . 13  |-  1  e.  RR+
1211a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
13 1red 9684 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
14 eliooord 11723 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
1514adantl 472 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
1615simpld 465 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
1713, 10, 16ltled 9809 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
1810, 12, 17rpgecld 11406 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1918relogcld 23621 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
2019resqcld 12474 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  RR )
2120rehalfcld 10888 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  RR )
2221recnd 9695 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  CC )
2319recnd 9695 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
2410, 16rplogcld 23627 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2524rpne0d 11375 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
268, 22, 23, 25divsubdird 10450 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) ) )
277, 21resubcld 10075 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  RR )
2827recnd 9695 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  CC )
2928, 23, 25divrecd 10414 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
3020recnd 9695 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  CC )
31 2cnd 10710 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
32 2ne0 10730 . . . . . . . . . 10  |-  2  =/=  0
3332a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  =/=  0 )
3430, 31, 23, 33, 25divdiv32d 10436 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 ) )
3523sqvald 12445 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
) ^ 2 )  =  ( ( log `  x )  x.  ( log `  x ) ) )
3635oveq1d 6330 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( ( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) ) )
3723, 23, 25divcan3d 10416 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) )  =  ( log `  x ) )
3836, 37eqtrd 2496 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( log `  x ) )
3938oveq1d 6330 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 )  =  ( ( log `  x
)  /  2 ) )
4034, 39eqtrd 2496 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( log `  x
)  /  2 ) )
4140oveq2d 6331 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )
4226, 29, 413eqtr3rd 2505 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  =  ( (
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
4342mpteq2dva 4503 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) ) )
4424rprecred 11381 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  /  ( log `  x ) )  e.  RR )
4518ex 440 . . . . . . 7  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
4645ssrdv 3450 . . . . . 6  |-  ( T. 
->  ( 1 (,) +oo )  C_  RR+ )
47 eqid 2462 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )
4847logdivsum 24420 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) : RR+ --> RR  /\  (
x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  /\  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  ~~> r  1  /\  1  e.  RR+  /\  _e  <_  1 )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) `
 1 )  - 
1 ) )  <_ 
( ( log `  1
)  /  1 ) ) )
4948simp2i 1024 . . . . . . 7  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r
50 rlimdmo1 13730 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  -> 
( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O(1) )
5149, 50mp1i 13 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O(1) )
5246, 51o1res2 13676 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O(1) )
53 divlogrlim 23629 . . . . . 6  |-  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
54 rlimo1 13729 . . . . . 6  |-  ( ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  ~~> r  0  ->  (
x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
5553, 54mp1i 13 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
5627, 44, 52, 55o1mul2 13737 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )  e.  O(1) )
5743, 56eqeltrd 2540 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O(1) )
588, 23, 25divcld 10411 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  e.  CC )
5923halfcld 10886 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
6058, 59subcld 10012 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  e.  CC )
61 elfznn 11857 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
6261adantl 472 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
63 vmacl 24094 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6462, 63syl 17 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6564, 62nndivred 10686 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
6618adantr 471 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
6762nnrpd 11368 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
6866, 67rpdivcld 11387 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
6968relogcld 23621 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
7065, 69remulcld 9697 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  RR )
711, 70fsumrecl 13849 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
7271recnd 9695 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
7324rpcnd 11372 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
7472, 73, 25divcld 10411 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  CC )
7573halfcld 10886 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
7674, 75subcld 10012 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
7758, 74, 59nnncan2d 10047 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
788, 72, 23, 25divsubdird 10450 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
79 fzfid 12218 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
8064adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  RR )
8162adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  NN )
82 elfznn 11857 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
8382adantl 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
8481, 83nnmulcld 10685 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
8580, 84nndivred 10686 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  e.  RR )
8679, 85fsumrecl 13849 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  RR )
8786recnd 9695 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  CC )
8870recnd 9695 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  CC )
891, 87, 88fsumsub 13898 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
9064recnd 9695 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
9162nncnd 10653 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
9262nnne0d 10682 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9390, 91, 92divcld 10411 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
9483nnrecred 10683 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  RR )
9579, 94fsumrecl 13849 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  RR )
9695recnd 9695 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
9769recnd 9695 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
9893, 96, 97subdid 10102 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
9990adantr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  CC )
10091adantr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  CC )
10183nncnd 10653 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  CC )
10292adantr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  =/=  0 )
10383nnne0d 10682 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  =/=  0 )
10499, 100, 101, 102, 103divdiv1d 10442 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( (Λ `  n )  /  (
n  x.  m ) ) )
10599, 100, 102divcld 10411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
106105, 101, 103divrecd 10414 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
107104, 106eqtr3d 2498 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
108107sumeq2dv 13818 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
109101, 103reccld 10404 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
11079, 93, 109fsummulc2 13894 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
111108, 110eqtr4d 2499 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
112111oveq1d 6330 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  n )  /  (
n  x.  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
11398, 112eqtr4d 2499 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
114113sumeq2dv 13818 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
115 vmasum 24193 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
1163, 115syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ n  e. 
{ y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
117116oveq1d 6330 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  ( ( log `  k )  /  k
) )
118 fzfid 12218 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
119 sgmss 24082 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
1203, 119syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  C_  ( 1 ... k ) )
121 ssfi 7818 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
122118, 120, 121syl2anc 671 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  e.  Fin )
1233nncnd 10653 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  CC )
124 ssrab2 3526 . . . . . . . . . . . . . . . . . 18  |-  { y  e.  NN  |  y 
||  k }  C_  NN
125 simprr 771 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
126124, 125sseldi 3442 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  NN )
127126, 63syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  RR )
128127recnd 9695 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  CC )
129128anassrs 658 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_
`  x ) ) )  /\  n  e. 
{ y  e.  NN  |  y  ||  k } )  ->  (Λ `  n
)  e.  CC )
1303nnne0d 10682 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  =/=  0 )
131122, 123, 129, 130fsumdivc 13896 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  sum_ n  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  n )  /  k ) )
132117, 131eqtr3d 2498 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  =  sum_ n  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  n )  /  k
) )
133132sumeq2dv 13818 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k ) )
134 oveq2 6323 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
(Λ `  n )  / 
k )  =  ( (Λ `  n )  /  ( n  x.  m ) ) )
1352ad2antrl 739 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  NN )
136135nncnd 10653 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  CC )
137135nnne0d 10682 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  =/=  0 )
138128, 136, 137divcld 10411 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
( (Λ `  n )  /  k )  e.  CC )
139134, 10, 138dvdsflsumcom 24166 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) ) )
140133, 139eqtrd 2496 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) ) )
141140oveq1d 6330 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
14289, 114, 1413eqtr4rd 2507 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
143142oveq1d 6330 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
14477, 78, 1433eqtr2d 2502 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
145144mpteq2dva 4503 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) ) )
146 1red 9684 . . . . . . 7  |-  ( T. 
->  1  e.  RR )
1471, 65fsumrecl 13849 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
148147, 24rerpdivcld 11398 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  RR )
149 ioossre 11725 . . . . . . . . . . 11  |-  ( 1 (,) +oo )  C_  RR
150 ax-1cn 9623 . . . . . . . . . . 11  |-  1  e.  CC
151 o1const 13732 . . . . . . . . . . 11  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
152149, 150, 151mp2an 683 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1)
153152a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
154148recnd 9695 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  CC )
15512rpcnd 11372 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
156147recnd 9695 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
157156, 23, 23, 25divsubdird 10450 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  -  ( ( log `  x
)  /  ( log `  x ) ) ) )
158156, 23subcld 10012 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
159158, 23, 25divrecd 10414 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  x.  ( 1  /  ( log `  x ) ) ) )
16023, 25dividd 10409 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  ( log `  x ) )  =  1 )
161160oveq2d 6331 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  (
( log `  x
)  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
162157, 159, 1613eqtr3rd 2505 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  x.  ( 1  / 
( log `  x
) ) ) )
163162mpteq2dva 4503 . . . . . . . . . . 11  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) ) )
164147, 19resubcld 10075 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  RR )
165 vmadivsum 24369 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
166165a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
16746, 166o1res2 13676 . . . . . . . . . . . 12  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
168164, 44, 167, 55o1mul2 13737 . . . . . . . . . . 11  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  e.  O(1) )
169163, 168eqeltrd 2540 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  e.  O(1) )
170154, 155, 169o1dif 13742 . . . . . . . . 9  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) ) )
171153, 170mpbird 240 . . . . . . . 8  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1) )
172148, 171o1lo1d 13652 . . . . . . 7  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e. 
<_O(1) )
17395, 69resubcld 10075 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  RR )
17465, 173remulcld 9697 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
1751, 174fsumrecl 13849 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  RR )
176175, 24rerpdivcld 11398 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  e.  RR )
177 1red 9684 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
178 vmage0 24097 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
17962, 178syl 17 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
18064, 67, 179divge0d 11407 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  /  n ) )
18168rpred 11370 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
18291mulid2d 9687 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
183 fznnfl 12121 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
18410, 183syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
185184simplbda 634 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
186182, 185eqbrtrd 4437 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
18710adantr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
188177, 187, 67lemuldivd 11416 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
189186, 188mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
190 harmonicubnd 23984 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR  /\  1  <_  ( x  /  n ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) )
191181, 189, 190syl2anc 671 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  <_  ( ( log `  ( x  /  n ) )  +  1 ) )
19295, 69, 177lesubadd2d 10240 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) )  <_  1  <->  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) ) )
193191, 192mpbird 240 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  <_  1 )
194173, 177, 65, 180, 193lemul2ad 10575 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( ( (Λ `  n
)  /  n )  x.  1 ) )
19593mulid1d 9686 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  1 )  =  ( (Λ `  n )  /  n
) )
196194, 195breqtrd 4441 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( (Λ `  n )  /  n ) )
1971, 174, 65, 196fsumle 13908 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
198175, 147, 24, 197lediv1dd 11425 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
199198adantrr 728 . . . . . . 7  |-  ( ( T.  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
200146, 172, 148, 176, 199lo1le 13764 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_O(1) )
201 0red 9670 . . . . . . 7  |-  ( T. 
->  0  e.  RR )
202 harmoniclbnd 23983 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20368, 202syl 17 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20495, 69subge0d 10231 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) )  <->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
205203, 204mpbird 240 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )
20665, 173, 180, 205mulge0d 10218 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
2071, 174, 206fsumge0 13904 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
208175, 24, 207divge0d 11407 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
209176, 201, 208o1lo12 13651 . . . . . 6  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_O(1) ) )
210200, 209mpbird 240 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O(1) )
211145, 210eqeltrd 2540 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
21260, 76, 211o1dif 13742 . . 3  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O(1)  <->  (
x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) ) )
21357, 212mpbid 215 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
214213trud 1464 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455   T. wtru 1456    e. wcel 1898    =/= wne 2633   {crab 2753    C_ wss 3416   class class class wbr 4416    |-> cmpt 4475   dom cdm 4853   -->wf 5597   ` cfv 5601  (class class class)co 6315   Fincfn 7595   CCcc 9563   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    x. cmul 9570   +oocpnf 9698    < clt 9701    <_ cle 9702    - cmin 9886    / cdiv 10297   NNcn 10637   2c2 10687   RR+crp 11331   (,)cioo 11664   ...cfz 11813   |_cfl 12058   ^cexp 12304   abscabs 13346    ~~> r crli 13598   O(1)co1 13599   <_O(1)clo1 13600   sum_csu 13801   _eceu 14164    || cdvds 14354   logclog 23553  Λcvma 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643  ax-addf 9644  ax-mulf 9645
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-map 7500  df-pm 7501  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-fi 7951  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-cda 8624  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-q 11294  df-rp 11332  df-xneg 11438  df-xadd 11439  df-xmul 11440  df-ioo 11668  df-ioc 11669  df-ico 11670  df-icc 11671  df-fz 11814  df-fzo 11947  df-fl 12060  df-mod 12129  df-seq 12246  df-exp 12305  df-fac 12492  df-bc 12520  df-hash 12548  df-shft 13179  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-limsup 13575  df-clim 13601  df-rlim 13602  df-o1 13603  df-lo1 13604  df-sum 13802  df-ef 14170  df-e 14171  df-sin 14172  df-cos 14173  df-pi 14175  df-dvds 14355  df-gcd 14518  df-prm 14672  df-pc 14836  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-starv 15254  df-sca 15255  df-vsca 15256  df-ip 15257  df-tset 15258  df-ple 15259  df-ds 15261  df-unif 15262  df-hom 15263  df-cco 15264  df-rest 15370  df-topn 15371  df-0g 15389  df-gsum 15390  df-topgen 15391  df-pt 15392  df-prds 15395  df-xrs 15449  df-qtop 15455  df-imas 15456  df-xps 15459  df-mre 15541  df-mrc 15542  df-acs 15544  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-submnd 16632  df-mulg 16725  df-cntz 17020  df-cmn 17481  df-psmet 19011  df-xmet 19012  df-met 19013  df-bl 19014  df-mopn 19015  df-fbas 19016  df-fg 19017  df-cnfld 19020  df-top 19970  df-bases 19971  df-topon 19972  df-topsp 19973  df-cld 20083  df-ntr 20084  df-cls 20085  df-nei 20163  df-lp 20201  df-perf 20202  df-cn 20292  df-cnp 20293  df-haus 20380  df-cmp 20451  df-tx 20626  df-hmeo 20819  df-fil 20910  df-fm 21002  df-flim 21003  df-flf 21004  df-xms 21384  df-ms 21385  df-tms 21386  df-cncf 21959  df-limc 22870  df-dv 22871  df-log 23555  df-cxp 23556  df-em 23967  df-cht 24072  df-vma 24073  df-chp 24074  df-ppi 24075
This theorem is referenced by:  vmalogdivsum  24426  2vmadivsumlem  24427  selberg4lem1  24447
  Copyright terms: Public domain W3C validator