MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Structured version   Unicode version

Theorem vmalogdivsum2 23849
Description: The sum  sum_ n  <_  x , Λ ( n ) log ( x  /  n )  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem vmalogdivsum2
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12086 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 11739 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
32adantl 466 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
43nnrpd 11280 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
54relogcld 23134 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  k )  e.  RR )
65, 3nndivred 10605 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  e.  RR )
71, 6fsumrecl 13568 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  RR )
87recnd 9639 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  CC )
9 elioore 11584 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
109adantl 466 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
11 1rp 11249 . . . . . . . . . . . . 13  |-  1  e.  RR+
1211a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
13 1red 9628 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
14 eliooord 11609 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
1514adantl 466 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
1615simpld 459 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
1713, 10, 16ltled 9750 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
1810, 12, 17rpgecld 11316 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1918relogcld 23134 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
2019resqcld 12339 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  RR )
2120rehalfcld 10806 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  RR )
2221recnd 9639 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  CC )
2319recnd 9639 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
2410, 16rplogcld 23140 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2524rpne0d 11286 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
268, 22, 23, 25divsubdird 10380 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) ) )
277, 21resubcld 10008 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  RR )
2827recnd 9639 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  CC )
2928, 23, 25divrecd 10344 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
3020recnd 9639 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  CC )
31 2cnd 10629 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
32 2ne0 10649 . . . . . . . . . 10  |-  2  =/=  0
3332a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  =/=  0 )
3430, 31, 23, 33, 25divdiv32d 10366 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 ) )
3523sqvald 12310 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
) ^ 2 )  =  ( ( log `  x )  x.  ( log `  x ) ) )
3635oveq1d 6311 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( ( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) ) )
3723, 23, 25divcan3d 10346 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) )  =  ( log `  x ) )
3836, 37eqtrd 2498 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( log `  x ) )
3938oveq1d 6311 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 )  =  ( ( log `  x
)  /  2 ) )
4034, 39eqtrd 2498 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( log `  x
)  /  2 ) )
4140oveq2d 6312 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )
4226, 29, 413eqtr3rd 2507 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  =  ( (
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
4342mpteq2dva 4543 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) ) )
4424rprecred 11292 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  /  ( log `  x ) )  e.  RR )
4518ex 434 . . . . . . 7  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
4645ssrdv 3505 . . . . . 6  |-  ( T. 
->  ( 1 (,) +oo )  C_  RR+ )
47 eqid 2457 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )
4847logdivsum 23844 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) : RR+ --> RR  /\  (
x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  /\  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  ~~> r  1  /\  1  e.  RR+  /\  _e  <_  1 )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) `
 1 )  - 
1 ) )  <_ 
( ( log `  1
)  /  1 ) ) )
4948simp2i 1006 . . . . . . 7  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r
50 rlimdmo1 13452 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  -> 
( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O(1) )
5149, 50mp1i 12 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O(1) )
5246, 51o1res2 13398 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O(1) )
53 divlogrlim 23142 . . . . . 6  |-  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
54 rlimo1 13451 . . . . . 6  |-  ( ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  ~~> r  0  ->  (
x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
5553, 54mp1i 12 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O(1) )
5627, 44, 52, 55o1mul2 13459 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )  e.  O(1) )
5743, 56eqeltrd 2545 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O(1) )
588, 23, 25divcld 10341 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  e.  CC )
5923halfcld 10804 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
6058, 59subcld 9950 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  e.  CC )
61 elfznn 11739 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
6261adantl 466 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
63 vmacl 23518 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6462, 63syl 16 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6564, 62nndivred 10605 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
6618adantr 465 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
6762nnrpd 11280 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
6866, 67rpdivcld 11298 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
6968relogcld 23134 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
7065, 69remulcld 9641 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  RR )
711, 70fsumrecl 13568 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
7271recnd 9639 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
7324rpcnd 11283 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
7472, 73, 25divcld 10341 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  CC )
7573halfcld 10804 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
7674, 75subcld 9950 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
7758, 74, 59nnncan2d 9985 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
788, 72, 23, 25divsubdird 10380 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
79 fzfid 12086 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
8064adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  RR )
8162adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  NN )
82 elfznn 11739 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
8382adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
8481, 83nnmulcld 10604 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
8580, 84nndivred 10605 . . . . . . . . . . . 12  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  e.  RR )
8679, 85fsumrecl 13568 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  RR )
8786recnd 9639 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  CC )
8870recnd 9639 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  CC )
891, 87, 88fsumsub 13615 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
9064recnd 9639 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
9162nncnd 10572 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
9262nnne0d 10601 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9390, 91, 92divcld 10341 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
9483nnrecred 10602 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  RR )
9579, 94fsumrecl 13568 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  RR )
9695recnd 9639 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
9769recnd 9639 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
9893, 96, 97subdid 10033 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
9990adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  CC )
10091adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  CC )
10183nncnd 10572 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  CC )
10292adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  =/=  0 )
10383nnne0d 10601 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  =/=  0 )
10499, 100, 101, 102, 103divdiv1d 10372 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( (Λ `  n )  /  (
n  x.  m ) ) )
10599, 100, 102divcld 10341 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
106105, 101, 103divrecd 10344 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
107104, 106eqtr3d 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
108107sumeq2dv 13537 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
109101, 103reccld 10334 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
11079, 93, 109fsummulc2 13611 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
111108, 110eqtr4d 2501 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
112111oveq1d 6311 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  n )  /  (
n  x.  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
11398, 112eqtr4d 2501 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
114113sumeq2dv 13537 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
115 vmasum 23617 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
1163, 115syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ n  e. 
{ y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
117116oveq1d 6311 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  ( ( log `  k )  /  k
) )
118 fzfid 12086 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
119 sgmss 23506 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
1203, 119syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  C_  ( 1 ... k ) )
121 ssfi 7759 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
122118, 120, 121syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  e.  Fin )
1233nncnd 10572 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  CC )
124 ssrab2 3581 . . . . . . . . . . . . . . . . . 18  |-  { y  e.  NN  |  y 
||  k }  C_  NN
125 simprr 757 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
126124, 125sseldi 3497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  NN )
127126, 63syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  RR )
128127recnd 9639 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  CC )
129128anassrs 648 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_
`  x ) ) )  /\  n  e. 
{ y  e.  NN  |  y  ||  k } )  ->  (Λ `  n
)  e.  CC )
1303nnne0d 10601 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  =/=  0 )
131122, 123, 129, 130fsumdivc 13613 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  sum_ n  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  n )  /  k ) )
132117, 131eqtr3d 2500 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  =  sum_ n  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  n )  /  k
) )
133132sumeq2dv 13537 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k ) )
134 oveq2 6304 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
(Λ `  n )  / 
k )  =  ( (Λ `  n )  /  ( n  x.  m ) ) )
1352ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  NN )
136135nncnd 10572 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  CC )
137135nnne0d 10601 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  =/=  0 )
138128, 136, 137divcld 10341 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
( (Λ `  n )  /  k )  e.  CC )
139134, 10, 138dvdsflsumcom 23590 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) ) )
140133, 139eqtrd 2498 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) ) )
141140oveq1d 6311 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
14289, 114, 1413eqtr4rd 2509 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
143142oveq1d 6311 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
14477, 78, 1433eqtr2d 2504 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
145144mpteq2dva 4543 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) ) )
146 1red 9628 . . . . . . 7  |-  ( T. 
->  1  e.  RR )
1471, 65fsumrecl 13568 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
148147, 24rerpdivcld 11308 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  RR )
149 ioossre 11611 . . . . . . . . . . 11  |-  ( 1 (,) +oo )  C_  RR
150 ax-1cn 9567 . . . . . . . . . . 11  |-  1  e.  CC
151 o1const 13454 . . . . . . . . . . 11  |-  ( ( ( 1 (,) +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
152149, 150, 151mp2an 672 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1)
153152a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) )
154148recnd 9639 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  CC )
15512rpcnd 11283 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
156147recnd 9639 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
157156, 23, 23, 25divsubdird 10380 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  -  ( ( log `  x
)  /  ( log `  x ) ) ) )
158156, 23subcld 9950 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
159158, 23, 25divrecd 10344 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  x.  ( 1  /  ( log `  x ) ) ) )
16023, 25dividd 10339 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  ( log `  x ) )  =  1 )
161160oveq2d 6312 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  (
( log `  x
)  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
162157, 159, 1613eqtr3rd 2507 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  x.  ( 1  / 
( log `  x
) ) ) )
163162mpteq2dva 4543 . . . . . . . . . . 11  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) ) )
164147, 19resubcld 10008 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  RR )
165 vmadivsum 23793 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
166165a1i 11 . . . . . . . . . . . . 13  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
16746, 166o1res2 13398 . . . . . . . . . . . 12  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
168164, 44, 167, 55o1mul2 13459 . . . . . . . . . . 11  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  e.  O(1) )
169163, 168eqeltrd 2545 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  e.  O(1) )
170154, 155, 169o1dif 13464 . . . . . . . . 9  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  1 )  e.  O(1) ) )
171153, 170mpbird 232 . . . . . . . 8  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O(1) )
172148, 171o1lo1d 13374 . . . . . . 7  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e. 
<_O(1) )
17395, 69resubcld 10008 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  RR )
17465, 173remulcld 9641 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
1751, 174fsumrecl 13568 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  RR )
176175, 24rerpdivcld 11308 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  e.  RR )
177 1red 9628 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
178 vmage0 23521 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
17962, 178syl 16 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
18064, 67, 179divge0d 11317 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  /  n ) )
18168rpred 11281 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
18291mulid2d 9631 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
183 fznnfl 11992 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
18410, 183syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
185184simplbda 624 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
186182, 185eqbrtrd 4476 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
18710adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
188177, 187, 67lemuldivd 11326 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
189186, 188mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
190 harmonicubnd 23465 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR  /\  1  <_  ( x  /  n ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) )
191181, 189, 190syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  <_  ( ( log `  ( x  /  n ) )  +  1 ) )
19295, 69, 177lesubadd2d 10172 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) )  <_  1  <->  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) ) )
193191, 192mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  <_  1 )
194173, 177, 65, 180, 193lemul2ad 10506 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( ( (Λ `  n
)  /  n )  x.  1 ) )
19593mulid1d 9630 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  1 )  =  ( (Λ `  n )  /  n
) )
196194, 195breqtrd 4480 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( (Λ `  n )  /  n ) )
1971, 174, 65, 196fsumle 13625 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
198175, 147, 24, 197lediv1dd 11335 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
199198adantrr 716 . . . . . . 7  |-  ( ( T.  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
200146, 172, 148, 176, 199lo1le 13486 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_O(1) )
201 0red 9614 . . . . . . 7  |-  ( T. 
->  0  e.  RR )
202 harmoniclbnd 23464 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20368, 202syl 16 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20495, 69subge0d 10163 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) )  <->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
205203, 204mpbird 232 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )
20665, 173, 180, 205mulge0d 10150 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
2071, 174, 206fsumge0 13621 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
208175, 24, 207divge0d 11317 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
209176, 201, 208o1lo12 13373 . . . . . 6  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_O(1) ) )
210200, 209mpbird 232 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O(1) )
211145, 210eqeltrd 2545 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
21260, 76, 211o1dif 13464 . . 3  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O(1)  <->  (
x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) ) )
21357, 212mpbid 210 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
214213trud 1404 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   T. wtru 1396    e. wcel 1819    =/= wne 2652   {crab 2811    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296   Fincfn 7535   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514   +oocpnf 9642    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   RR+crp 11245   (,)cioo 11554   ...cfz 11697   |_cfl 11930   ^cexp 12169   abscabs 13079    ~~> r crli 13320   O(1)co1 13321   <_O(1)clo1 13322   sum_csu 13520   _eceu 13810    || cdvds 13998   logclog 23068  Λcvma 23491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-shft 12912  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324  df-o1 13325  df-lo1 13326  df-sum 13521  df-ef 13815  df-e 13816  df-sin 13817  df-cos 13818  df-pi 13820  df-dvds 13999  df-gcd 14157  df-prm 14230  df-pc 14373  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-mulg 16187  df-cntz 16482  df-cmn 16927  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lp 19764  df-perf 19765  df-cn 19855  df-cnp 19856  df-haus 19943  df-cmp 20014  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cncf 21508  df-limc 22396  df-dv 22397  df-log 23070  df-cxp 23071  df-em 23448  df-cht 23496  df-vma 23497  df-chp 23498  df-ppi 23499
This theorem is referenced by:  vmalogdivsum  23850  2vmadivsumlem  23851  selberg4lem1  23871
  Copyright terms: Public domain W3C validator