MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum Structured version   Unicode version

Theorem vmalogdivsum 24354
Description: The sum  sum_ n  <_  x , Λ ( n ) log n  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem vmalogdivsum
StepHypRef Expression
1 elioore 11662 . . . . . . . 8  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 467 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 11302 . . . . . . . 8  |-  1  e.  RR+
43a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 9654 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 11690 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 467 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 460 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 9779 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11373 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1110ex 435 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
1211ssrdv 3467 . . . 4  |-  ( T. 
->  ( 1 (,) +oo )  C_  RR+ )
13 vmadivsum 24297 . . . . 5  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
1413a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
1512, 14o1res2 13605 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
16 fzfid 12179 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
17 elfznn 11822 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1817adantl 467 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
19 vmacl 24022 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
2018, 19syl 17 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
2120, 18nndivred 10654 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
2221recnd 9665 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
2316, 22fsumcl 13777 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
2410relogcld 23549 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
2524recnd 9665 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
2623, 25subcld 9982 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
2718nnrpd 11335 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2827relogcld 23549 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
2921, 28remulcld 9667 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  RR )
3016, 29fsumrecl 13778 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  RR )
312, 8rplogcld 23555 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
3230, 31rerpdivcld 11365 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
3324rehalfcld 10855 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
3432, 33resubcld 10043 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  RR )
3534recnd 9665 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
3633recnd 9665 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
3723, 36subcld 9982 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  x
)  /  2 ) )  e.  CC )
3832recnd 9665 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  CC )
3937, 38, 36nnncan2d 10017 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
4023, 36, 36subsub4d 10013 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( ( log `  x
)  /  2 )  +  ( ( log `  x )  /  2
) ) ) )
41252halvesd 10854 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  /  2 )  +  ( ( log `  x )  /  2
) )  =  ( log `  x ) )
4241oveq2d 6313 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( ( log `  x
)  /  2 )  +  ( ( log `  x )  /  2
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )
4340, 42eqtrd 2461 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
4443oveq1d 6312 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )
4523, 36, 38sub32d 10014 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( ( log `  x )  /  2 ) ) )
4610adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
4746relogcld 23549 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR )
4821, 47remulcld 9667 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  x ) )  e.  RR )
4948recnd 9665 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  x ) )  e.  CC )
5029recnd 9665 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  CC )
5116, 49, 50fsumsub 13827 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  ( log `  x ) )  -  ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
5246, 27relogdivd 23552 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  =  ( ( log `  x
)  -  ( log `  n ) ) )
5352oveq2d 6313 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  =  ( ( (Λ `  n )  /  n
)  x.  ( ( log `  x )  -  ( log `  n
) ) ) )
5425adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  CC )
5528recnd 9665 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
5622, 54, 55subdid 10070 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  (
( log `  x
)  -  ( log `  n ) ) )  =  ( ( ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) )
5753, 56eqtrd 2461 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  =  ( ( ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) )
5857sumeq2dv 13747 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
5920recnd 9665 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6018nncnd 10621 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
6118nnne0d 10650 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
6259, 60, 61divcld 10379 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
6316, 25, 62fsummulc1 13824 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  ( log `  x ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  x
) ) )
6463oveq1d 6312 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )
6551, 58, 643eqtr4d 2471 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
6665oveq1d 6312 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  / 
( log `  x
) ) )
6723, 25mulcld 9659 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  ( log `  x ) )  e.  CC )
6830recnd 9665 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  CC )
6931rpne0d 11342 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
7067, 68, 25, 69divsubdird 10418 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  /  ( log `  x ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  ( log `  x ) )  / 
( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
7123, 25, 69divcan4d 10385 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  /  ( log `  x ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
7271oveq1d 6312 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  /  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) )  /  ( log `  x
) ) ) )
7366, 70, 723eqtrd 2465 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
7473oveq1d 6312 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( ( log `  x )  /  2 ) ) )
7545, 74eqtr4d 2464 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )
7639, 44, 753eqtr3d 2469 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )
7776mpteq2dva 4504 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) ) )
78 vmalogdivsum2 24353 . . . . 5  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
7977, 78syl6eqel 2516 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
8026, 35, 79o1dif 13671 . . 3  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) ) )
8115, 80mpbid 213 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
8281trud 1446 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370   T. wtru 1438    e. wcel 1867   class class class wbr 4417    |-> cmpt 4476   ` cfv 5593  (class class class)co 6297   CCcc 9533   RRcr 9534   1c1 9536    + caddc 9538    x. cmul 9540   +oocpnf 9668    < clt 9671    - cmin 9856    / cdiv 10265   NNcn 10605   2c2 10655   RR+crp 11298   (,)cioo 11631   ...cfz 11778   |_cfl 12019   O(1)co1 13528   sum_csu 13730   logclog 23481  Λcvma 23995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4530  ax-sep 4540  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6589  ax-inf2 8144  ax-cnex 9591  ax-resscn 9592  ax-1cn 9593  ax-icn 9594  ax-addcl 9595  ax-addrcl 9596  ax-mulcl 9597  ax-mulrcl 9598  ax-mulcom 9599  ax-addass 9600  ax-mulass 9601  ax-distr 9602  ax-i2m1 9603  ax-1ne0 9604  ax-1rid 9605  ax-rnegex 9606  ax-rrecex 9607  ax-cnre 9608  ax-pre-lttri 9609  ax-pre-lttrn 9610  ax-pre-ltadd 9611  ax-pre-mulgt0 9612  ax-pre-sup 9613  ax-addf 9614  ax-mulf 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4477  df-mpt 4478  df-tr 4513  df-eprel 4757  df-id 4761  df-po 4767  df-so 4768  df-fr 4805  df-se 4806  df-we 4807  df-xp 4852  df-rel 4853  df-cnv 4854  df-co 4855  df-dm 4856  df-rn 4857  df-res 4858  df-ima 4859  df-pred 5391  df-ord 5437  df-on 5438  df-lim 5439  df-suc 5440  df-iota 5557  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6259  df-ov 6300  df-oprab 6301  df-mpt2 6302  df-of 6537  df-om 6699  df-1st 6799  df-2nd 6800  df-supp 6918  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7882  df-fi 7923  df-sup 7954  df-inf 7955  df-oi 8023  df-card 8370  df-cda 8594  df-pnf 9673  df-mnf 9674  df-xr 9675  df-ltxr 9676  df-le 9677  df-sub 9858  df-neg 9859  df-div 10266  df-nn 10606  df-2 10664  df-3 10665  df-4 10666  df-5 10667  df-6 10668  df-7 10669  df-8 10670  df-9 10671  df-10 10672  df-n0 10866  df-z 10934  df-dec 11048  df-uz 11156  df-q 11261  df-rp 11299  df-xneg 11405  df-xadd 11406  df-xmul 11407  df-ioo 11635  df-ioc 11636  df-ico 11637  df-icc 11638  df-fz 11779  df-fzo 11910  df-fl 12021  df-mod 12090  df-seq 12207  df-exp 12266  df-fac 12453  df-bc 12481  df-hash 12509  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-o1 13532  df-lo1 13533  df-sum 13731  df-ef 14099  df-e 14100  df-sin 14101  df-cos 14102  df-pi 14104  df-dvds 14284  df-gcd 14447  df-prm 14601  df-pc 14765  df-struct 15101  df-ndx 15102  df-slot 15103  df-base 15104  df-sets 15105  df-ress 15106  df-plusg 15181  df-mulr 15182  df-starv 15183  df-sca 15184  df-vsca 15185  df-ip 15186  df-tset 15187  df-ple 15188  df-ds 15190  df-unif 15191  df-hom 15192  df-cco 15193  df-rest 15299  df-topn 15300  df-0g 15318  df-gsum 15319  df-topgen 15320  df-pt 15321  df-prds 15324  df-xrs 15378  df-qtop 15384  df-imas 15385  df-xps 15388  df-mre 15470  df-mrc 15471  df-acs 15473  df-mgm 16466  df-sgrp 16505  df-mnd 16515  df-submnd 16561  df-mulg 16654  df-cntz 16949  df-cmn 17410  df-psmet 18940  df-xmet 18941  df-met 18942  df-bl 18943  df-mopn 18944  df-fbas 18945  df-fg 18946  df-cnfld 18949  df-top 19898  df-bases 19899  df-topon 19900  df-topsp 19901  df-cld 20011  df-ntr 20012  df-cls 20013  df-nei 20091  df-lp 20129  df-perf 20130  df-cn 20220  df-cnp 20221  df-haus 20308  df-cmp 20379  df-tx 20554  df-hmeo 20747  df-fil 20838  df-fm 20930  df-flim 20931  df-flf 20932  df-xms 21312  df-ms 21313  df-tms 21314  df-cncf 21887  df-limc 22798  df-dv 22799  df-log 23483  df-cxp 23484  df-em 23895  df-cht 24000  df-vma 24001  df-chp 24002  df-ppi 24003
This theorem is referenced by:  selberg3r  24384
  Copyright terms: Public domain W3C validator