MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum Structured version   Unicode version

Theorem vmalogdivsum 22803
Description: The sum  sum_ n  <_  x , Λ ( n ) log n  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem vmalogdivsum
StepHypRef Expression
1 elioore 11345 . . . . . . . 8  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 466 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 11010 . . . . . . . 8  |-  1  e.  RR+
43a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 9416 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 11370 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 466 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 459 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 9537 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11077 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1110ex 434 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
1211ssrdv 3377 . . . 4  |-  ( T. 
->  ( 1 (,) +oo )  C_  RR+ )
13 vmadivsum 22746 . . . . 5  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
1413a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
1512, 14o1res2 13056 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1) )
16 fzfid 11810 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
17 elfznn 11493 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1817adantl 466 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
19 vmacl 22471 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
2018, 19syl 16 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
2120, 18nndivred 10385 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
2221recnd 9427 . . . . . 6  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
2316, 22fsumcl 13225 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
2410relogcld 22087 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
2524recnd 9427 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
2623, 25subcld 9734 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
2718nnrpd 11041 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2827relogcld 22087 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
2921, 28remulcld 9429 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  RR )
3016, 29fsumrecl 13226 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  RR )
312, 8rplogcld 22093 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
3230, 31rerpdivcld 11069 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
3324rehalfcld 10586 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
3432, 33resubcld 9791 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  RR )
3534recnd 9427 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
3633recnd 9427 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
3723, 36subcld 9734 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  x
)  /  2 ) )  e.  CC )
3832recnd 9427 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  CC )
3937, 38, 36nnncan2d 9769 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
4023, 36, 36subsub4d 9765 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( ( log `  x
)  /  2 )  +  ( ( log `  x )  /  2
) ) ) )
41252halvesd 10585 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  /  2 )  +  ( ( log `  x )  /  2
) )  =  ( log `  x ) )
4241oveq2d 6122 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( ( log `  x
)  /  2 )  +  ( ( log `  x )  /  2
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )
4340, 42eqtrd 2475 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
4443oveq1d 6121 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )
4523, 36, 38sub32d 9766 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( ( log `  x )  /  2 ) ) )
4610adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
4746relogcld 22087 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR )
4821, 47remulcld 9429 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  x ) )  e.  RR )
4948recnd 9427 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  x ) )  e.  CC )
5029recnd 9427 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  n ) )  e.  CC )
5116, 49, 50fsumsub 13270 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  ( log `  x ) )  -  ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
5246, 27relogdivd 22090 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  =  ( ( log `  x
)  -  ( log `  n ) ) )
5352oveq2d 6122 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  =  ( ( (Λ `  n )  /  n
)  x.  ( ( log `  x )  -  ( log `  n
) ) ) )
5425adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  CC )
5528recnd 9427 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
5622, 54, 55subdid 9815 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  (
( log `  x
)  -  ( log `  n ) ) )  =  ( ( ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) )
5753, 56eqtrd 2475 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  =  ( ( ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  n ) ) ) )
5857sumeq2dv 13195 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
5920recnd 9427 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6018nncnd 10353 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
6118nnne0d 10381 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
6259, 60, 61divcld 10122 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
6316, 25, 62fsummulc1 13267 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  ( log `  x ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  x
) ) )
6463oveq1d 6121 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) ) )
6551, 58, 643eqtr4d 2485 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) ) )
6665oveq1d 6121 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  ( log `  x ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) ) )  / 
( log `  x
) ) )
6723, 25mulcld 9421 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  ( log `  x ) )  e.  CC )
6830recnd 9427 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  e.  CC )
6931rpne0d 11047 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
7067, 68, 25, 69divsubdird 10161 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) )  /  ( log `  x ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  ( log `  x ) )  / 
( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
7123, 25, 69divcan4d 10128 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  /  ( log `  x ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
7271oveq1d 6121 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  ( log `  x
) )  /  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) )  /  ( log `  x
) ) ) )
7366, 70, 723eqtrd 2479 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
7473oveq1d 6121 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  -  ( ( log `  x )  /  2 ) ) )
7545, 74eqtr4d 2478 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  x )  /  2
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )
7639, 44, 753eqtr3d 2483 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )
7776mpteq2dva 4393 . . . . 5  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) ) )
78 vmalogdivsum2 22802 . . . . 5  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
7977, 78syl6eqel 2531 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  -  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O(1) )
8026, 35, 79o1dif 13122 . . 3  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O(1)  <-> 
( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) ) )
8115, 80mpbid 210 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1) )
8281trud 1378 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  n
) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369   T. wtru 1370    e. wcel 1756   class class class wbr 4307    e. cmpt 4365   ` cfv 5433  (class class class)co 6106   CCcc 9295   RRcr 9296   1c1 9298    + caddc 9300    x. cmul 9302   +oocpnf 9430    < clt 9433    - cmin 9610    / cdiv 10008   NNcn 10337   2c2 10386   RR+crp 11006   (,)cioo 11315   ...cfz 11452   |_cfl 11655   O(1)co1 12979   sum_csu 13178   logclog 22021  Λcvma 22444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375  ax-addf 9376  ax-mulf 9377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-iin 4189  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-of 6335  df-om 6492  df-1st 6592  df-2nd 6593  df-supp 6706  df-recs 6847  df-rdg 6881  df-1o 6935  df-2o 6936  df-oadd 6939  df-er 7116  df-map 7231  df-pm 7232  df-ixp 7279  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-fsupp 7636  df-fi 7676  df-sup 7706  df-oi 7739  df-card 8124  df-cda 8352  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-5 10398  df-6 10399  df-7 10400  df-8 10401  df-9 10402  df-10 10403  df-n0 10595  df-z 10662  df-dec 10771  df-uz 10877  df-q 10969  df-rp 11007  df-xneg 11104  df-xadd 11105  df-xmul 11106  df-ioo 11319  df-ioc 11320  df-ico 11321  df-icc 11322  df-fz 11453  df-fzo 11564  df-fl 11657  df-mod 11724  df-seq 11822  df-exp 11881  df-fac 12067  df-bc 12094  df-hash 12119  df-shft 12571  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-limsup 12964  df-clim 12981  df-rlim 12982  df-o1 12983  df-lo1 12984  df-sum 13179  df-ef 13368  df-e 13369  df-sin 13370  df-cos 13371  df-pi 13373  df-dvds 13551  df-gcd 13706  df-prm 13779  df-pc 13919  df-struct 14191  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-ress 14196  df-plusg 14266  df-mulr 14267  df-starv 14268  df-sca 14269  df-vsca 14270  df-ip 14271  df-tset 14272  df-ple 14273  df-ds 14275  df-unif 14276  df-hom 14277  df-cco 14278  df-rest 14376  df-topn 14377  df-0g 14395  df-gsum 14396  df-topgen 14397  df-pt 14398  df-prds 14401  df-xrs 14455  df-qtop 14460  df-imas 14461  df-xps 14463  df-mre 14539  df-mrc 14540  df-acs 14542  df-mnd 15430  df-submnd 15480  df-mulg 15563  df-cntz 15850  df-cmn 16294  df-psmet 17824  df-xmet 17825  df-met 17826  df-bl 17827  df-mopn 17828  df-fbas 17829  df-fg 17830  df-cnfld 17834  df-top 18518  df-bases 18520  df-topon 18521  df-topsp 18522  df-cld 18638  df-ntr 18639  df-cls 18640  df-nei 18717  df-lp 18755  df-perf 18756  df-cn 18846  df-cnp 18847  df-haus 18934  df-cmp 19005  df-tx 19150  df-hmeo 19343  df-fil 19434  df-fm 19526  df-flim 19527  df-flf 19528  df-xms 19910  df-ms 19911  df-tms 19912  df-cncf 20469  df-limc 21356  df-dv 21357  df-log 22023  df-cxp 22024  df-em 22401  df-cht 22449  df-vma 22450  df-chp 22451  df-ppi 22452
This theorem is referenced by:  selberg3r  22833
  Copyright terms: Public domain W3C validator