MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Structured version   Unicode version

Theorem vmadivsum 23938
Description: The sum of the von Mangoldt function over  n is asymptotic to  log x  +  O(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 9531 . . . . . . 7  |-  RR  e.  _V
2 rpssre 11191 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4536 . . . . . 6  |-  RR+  e.  _V
43a1i 11 . . . . 5  |-  ( T. 
->  RR+  e.  _V )
5 ovex 6260 . . . . . 6  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  _V
65a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  _V )
7 ovex 6260 . . . . . 6  |-  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  e.  _V
87a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  e.  _V )
9 eqidd 2401 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) ) )
10 eqidd 2401 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  x
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )
114, 6, 8, 9, 10offval2 6492 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) ) )
1211trud 1412 . . 3  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )
13 fzfid 12035 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
14 elfznn 11683 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1514adantl 464 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
16 vmacl 23663 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1715, 16syl 17 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
1817, 15nndivred 10543 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
1913, 18fsumrecl 13610 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
2019recnd 9570 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
21 relogcl 23145 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2221recnd 9570 . . . . 5  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
23 rprege0 11195 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
24 flge0nn0 11903 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
25 faccl 12315 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ! `
 ( |_ `  x ) )  e.  NN )
2623, 24, 253syl 20 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ! `
 ( |_ `  x ) )  e.  NN )
2726nnrpd 11218 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ! `
 ( |_ `  x ) )  e.  RR+ )
2827relogcld 23192 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR )
29 rerpdivcl 11209 . . . . . . 7  |-  ( ( ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR  /\  x  e.  RR+ )  ->  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x )  e.  RR )
3028, 29mpancom 667 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x )  e.  RR )
3130recnd 9570 . . . . 5  |-  ( x  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x )  e.  CC )
3220, 22, 31nnncan2d 9920 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
3332mpteq2ia 4474 . . 3  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
3412, 33eqtri 2429 . 2  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )
35 1red 9559 . . . . 5  |-  ( T. 
->  1  e.  RR )
36 chpo1ub 23936 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O(1)
3736a1i 11 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1) )
38 rpre 11187 . . . . . . . . 9  |-  ( x  e.  RR+  ->  x  e.  RR )
39 chpcl 23669 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
4038, 39syl 17 . . . . . . . 8  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
41 rerpdivcl 11209 . . . . . . . 8  |-  ( ( (ψ `  x )  e.  RR  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
4240, 41mpancom 667 . . . . . . 7  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  RR )
4342recnd 9570 . . . . . 6  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  CC )
4443adantl 464 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  CC )
4520, 31subcld 9885 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  CC )
4645adantl 464 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  CC )
4738adantr 463 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
4818, 47remulcld 9572 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  e.  RR )
49 nndivre 10530 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
5038, 14, 49syl2an 475 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
51 reflcl 11881 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  e.  RR )
5250, 51syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
5317, 52remulcld 9572 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) )  e.  RR )
5448, 53resubcld 9946 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  e.  RR )
5550, 52resubcld 9946 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  e.  RR )
56 1red 9559 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
57 vmage0 23666 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
5815, 57syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
59 fracle1 11888 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  <_  1 )
6050, 59syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  <_ 
1 )
6155, 56, 17, 58, 60lemul2ad 10444 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  <_  ( (Λ `  n )  x.  1 ) )
6217recnd 9570 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6350recnd 9570 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
6452recnd 9570 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
6562, 63, 64subdid 9971 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( (Λ `  n )  x.  ( x  /  n
) )  -  (
(Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
66 rpcn 11189 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  CC )
6766adantr 463 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
6815nnrpd 11218 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
69 rpcnne0 11198 . . . . . . . . . . . . . . 15  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
7068, 69syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
71 div23 10185 . . . . . . . . . . . . . . 15  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  x.  x )  /  n )  =  ( ( (Λ `  n
)  /  n )  x.  x ) )
72 divass 10184 . . . . . . . . . . . . . . 15  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  x.  x )  /  n )  =  ( (Λ `  n
)  x.  ( x  /  n ) ) )
7371, 72eqtr3d 2443 . . . . . . . . . . . . . 14  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  /  n )  x.  x )  =  ( (Λ `  n
)  x.  ( x  /  n ) ) )
7462, 67, 70, 73syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  =  ( (Λ `  n )  x.  (
x  /  n ) ) )
7574oveq1d 6247 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  =  ( ( (Λ `  n )  x.  ( x  /  n
) )  -  (
(Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
7665, 75eqtr4d 2444 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
7762mulid1d 9561 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  1 )  =  (Λ `  n
) )
7861, 76, 773brtr3d 4421 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  <_  (Λ `  n
) )
7913, 54, 17, 78fsumle 13669 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  x )  -  ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n )
)
8018recnd 9570 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
8113, 66, 80fsummulc1 13656 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  x ) )
82 logfac2 23763 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( log `  ( ! `  ( |_ `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )
8323, 82syl 17 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )
8481, 83oveq12d 6250 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  x )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
8548recnd 9570 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  e.  CC )
8653recnd 9570 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) )  e.  CC )
8713, 85, 86fsumsub 13659 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  x )  -  ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  x
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) ) )
8884, 87eqtr4d 2444 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
89 chpval 23667 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (ψ `  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) (Λ `  n
) )
9038, 89syl 17 . . . . . . . . 9  |-  ( x  e.  RR+  ->  (ψ `  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) (Λ `  n
) )
9179, 88, 903brtr4d 4422 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  <_  (ψ `  x ) )
9219, 38remulcld 9572 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  e.  RR )
9392, 28resubcld 9946 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  e.  RR )
94 rpregt0 11194 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
95 lediv1 10366 . . . . . . . . 9  |-  ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  e.  RR  /\  (ψ `  x )  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  -> 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  <_  (ψ `  x
)  <->  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
)  <_  ( (ψ `  x )  /  x
) ) )
9693, 40, 94, 95syl3anc 1228 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  <_  (ψ `  x
)  <->  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
)  <_  ( (ψ `  x )  /  x
) ) )
9791, 96mpbid 210 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  <_  ( (ψ `  x )  /  x
) )
9892recnd 9570 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  e.  CC )
9928recnd 9570 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  CC )
100 rpcnne0 11198 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
101 divsubdir 10199 . . . . . . . . . . 11  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  e.  CC  /\  ( log `  ( ! `  ( |_ `  x ) ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
10298, 99, 100, 101syl3anc 1228 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
103 rpne0 11196 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  =/=  0 )
10420, 66, 103divcan4d 10285 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
105104oveq1d 6247 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  /  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
106102, 105eqtr2d 2442 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
) )
107106fveq2d 5807 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( abs `  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) ) )
108 rerpdivcl 11209 . . . . . . . . . 10  |-  ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  e.  RR  /\  x  e.  RR+ )  -> 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x )  e.  RR )
10993, 108mpancom 667 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  e.  RR )
110 flle 11884 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  <_ 
( x  /  n
) )
11150, 110syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) )
11250, 52subge0d 10100 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  <->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) ) )
113111, 112mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )
11417, 55, 58, 113mulge0d 10087 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) ) )
115114, 76breqtrd 4416 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
11613, 54, 115fsumge0 13665 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  0  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
117116, 88breqtrrd 4418 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  <_ 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) ) )
118 divge0 10370 . . . . . . . . . 10  |-  ( ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  e.  RR  /\  0  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) ) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
11993, 117, 94, 118syl21anc 1227 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x ) )
120109, 119absidd 13308 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
121107, 120eqtrd 2441 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
122 chpge0 23671 . . . . . . . . . 10  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
12338, 122syl 17 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
(ψ `  x )
)
124 divge0 10370 . . . . . . . . 9  |-  ( ( ( (ψ `  x
)  e.  RR  /\  0  <_  (ψ `  x
) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
(ψ `  x )  /  x ) )
12540, 123, 94, 124syl21anc 1227 . . . . . . . 8  |-  ( x  e.  RR+  ->  0  <_ 
( (ψ `  x
)  /  x ) )
12642, 125absidd 13308 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  ( (ψ `  x
)  /  x ) )  =  ( (ψ `  x )  /  x
) )
12797, 121, 1263brtr4d 4422 . . . . . 6  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  <_  ( abs `  ( (ψ `  x )  /  x
) ) )
128127ad2antrl 726 . . . . 5  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  <_  ( abs `  ( (ψ `  x
)  /  x ) ) )
12935, 37, 44, 46, 128o1le 13529 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1) )
130129trud 1412 . . 3  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  e.  O(1)
131 logfacrlim 23770 . . . 4  |-  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  ~~> r  1
132 rlimo1 13493 . . . 4  |-  ( ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  ~~> r  1  ->  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1) )
133131, 132ax-mp 5 . . 3  |-  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1)
134 o1sub 13492 . . 3  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( ( log `  x
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  e.  O(1) )  -> 
( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  e.  O(1) )
135130, 133, 134mp2an 670 . 2  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  e.  O(1)
13634, 135eqeltrri 2485 1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    /\ w3a 972    = wceq 1403   T. wtru 1404    e. wcel 1840    =/= wne 2596   _Vcvv 3056   class class class wbr 4392    |-> cmpt 4450   ` cfv 5523  (class class class)co 6232    oFcof 6473   CCcc 9438   RRcr 9439   0cc0 9440   1c1 9441    x. cmul 9445    < clt 9576    <_ cle 9577    - cmin 9759    / cdiv 10165   NNcn 10494   NN0cn0 10754   RR+crp 11181   ...cfz 11641   |_cfl 11875   !cfa 12305   abscabs 13121    ~~> r crli 13362   O(1)co1 13363   sum_csu 13562   logclog 23124  Λcvma 23636  ψcchp 23637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-inf2 8009  ax-cnex 9496  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-pre-mulgt0 9517  ax-pre-sup 9518  ax-addf 9519  ax-mulf 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-fal 1409  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-iin 4271  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-isom 5532  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-of 6475  df-om 6637  df-1st 6736  df-2nd 6737  df-supp 6855  df-recs 6997  df-rdg 7031  df-1o 7085  df-2o 7086  df-oadd 7089  df-er 7266  df-map 7377  df-pm 7378  df-ixp 7426  df-en 7473  df-dom 7474  df-sdom 7475  df-fin 7476  df-fsupp 7782  df-fi 7823  df-sup 7853  df-oi 7887  df-card 8270  df-cda 8498  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-sub 9761  df-neg 9762  df-div 10166  df-nn 10495  df-2 10553  df-3 10554  df-4 10555  df-5 10556  df-6 10557  df-7 10558  df-8 10559  df-9 10560  df-10 10561  df-n0 10755  df-z 10824  df-dec 10938  df-uz 11044  df-q 11144  df-rp 11182  df-xneg 11287  df-xadd 11288  df-xmul 11289  df-ioo 11502  df-ioc 11503  df-ico 11504  df-icc 11505  df-fz 11642  df-fzo 11766  df-fl 11877  df-mod 11946  df-seq 12060  df-exp 12119  df-fac 12306  df-bc 12333  df-hash 12358  df-shft 12954  df-cj 12986  df-re 12987  df-im 12988  df-sqrt 13122  df-abs 13123  df-limsup 13348  df-clim 13365  df-rlim 13366  df-o1 13367  df-lo1 13368  df-sum 13563  df-ef 13902  df-e 13903  df-sin 13904  df-cos 13905  df-pi 13907  df-dvds 14086  df-gcd 14244  df-prm 14317  df-pc 14460  df-struct 14733  df-ndx 14734  df-slot 14735  df-base 14736  df-sets 14737  df-ress 14738  df-plusg 14812  df-mulr 14813  df-starv 14814  df-sca 14815  df-vsca 14816  df-ip 14817  df-tset 14818  df-ple 14819  df-ds 14821  df-unif 14822  df-hom 14823  df-cco 14824  df-rest 14927  df-topn 14928  df-0g 14946  df-gsum 14947  df-topgen 14948  df-pt 14949  df-prds 14952  df-xrs 15006  df-qtop 15011  df-imas 15012  df-xps 15014  df-mre 15090  df-mrc 15091  df-acs 15093  df-mgm 16086  df-sgrp 16125  df-mnd 16135  df-submnd 16181  df-mulg 16274  df-cntz 16569  df-cmn 17014  df-psmet 18621  df-xmet 18622  df-met 18623  df-bl 18624  df-mopn 18625  df-fbas 18626  df-fg 18627  df-cnfld 18631  df-top 19581  df-bases 19583  df-topon 19584  df-topsp 19585  df-cld 19702  df-ntr 19703  df-cls 19704  df-nei 19782  df-lp 19820  df-perf 19821  df-cn 19911  df-cnp 19912  df-haus 19999  df-cmp 20070  df-tx 20245  df-hmeo 20438  df-fil 20529  df-fm 20621  df-flim 20622  df-flf 20623  df-xms 21005  df-ms 21006  df-tms 21007  df-cncf 21564  df-limc 22452  df-dv 22453  df-log 23126  df-cxp 23127  df-cht 23641  df-vma 23642  df-chp 23643  df-ppi 23644
This theorem is referenced by:  vmadivsumb  23939  rpvmasumlem  23943  vmalogdivsum2  23994  vmalogdivsum  23995  2vmadivsumlem  23996  selberg3lem1  24013  selberg4lem1  24016  pntrsumo1  24021  selbergr  24024
  Copyright terms: Public domain W3C validator