MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Unicode version

Theorem vmadivsum 20463
Description: The sum of the von Mangoldt function over  n is asymptotic to  log x  +  O ( 1 ). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 8708 . . . . . . 7  |-  RR  e.  _V
2 rpssre 10243 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4056 . . . . . 6  |-  RR+  e.  _V
43a1i 12 . . . . 5  |-  (  T. 
->  RR+  e.  _V )
5 ovex 5735 . . . . . 6  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  _V
65a1i 12 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  _V )
7 ovex 5735 . . . . . 6  |-  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  e.  _V
87a1i 12 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  e.  _V )
9 eqidd 2254 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) ) )
10 eqidd 2254 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( ( log `  x
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )
114, 6, 8, 9, 10offval2 5947 . . . 4  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  o F  -  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) ) )
1211trud 1320 . . 3  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  o F  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )
13 fzfid 10913 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
14 elfznn 10697 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1514adantl 454 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
16 vmacl 20188 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1715, 16syl 17 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
1817, 15nndivred 9674 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
1913, 18fsumrecl 12084 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
2019recnd 8741 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
21 relogcl 19764 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2221recnd 8741 . . . . 5  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
23 rprege0 10247 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
24 flge0nn0 10826 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
25 faccl 11176 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ! `
 ( |_ `  x ) )  e.  NN )
2623, 24, 253syl 20 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ! `
 ( |_ `  x ) )  e.  NN )
2726nnrpd 10268 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ! `
 ( |_ `  x ) )  e.  RR+ )
28 relogcl 19764 . . . . . . . 8  |-  ( ( ! `  ( |_
`  x ) )  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR )
2927, 28syl 17 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR )
30 rerpdivcl 10260 . . . . . . 7  |-  ( ( ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR  /\  x  e.  RR+ )  ->  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x )  e.  RR )
3129, 30mpancom 653 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x )  e.  RR )
3231recnd 8741 . . . . 5  |-  ( x  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x )  e.  CC )
3320, 22, 32nnncan2d 9072 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
3433mpteq2ia 3999 . . 3  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
3512, 34eqtri 2273 . 2  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  o F  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )
36 1re 8717 . . . . . 6  |-  1  e.  RR
3736a1i 12 . . . . 5  |-  (  T. 
->  1  e.  RR )
38 chpo1ub 20461 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O
( 1 )
3938a1i 12 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O ( 1 ) )
40 rpre 10239 . . . . . . . . 9  |-  ( x  e.  RR+  ->  x  e.  RR )
41 chpcl 20194 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
4240, 41syl 17 . . . . . . . 8  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
43 rerpdivcl 10260 . . . . . . . 8  |-  ( ( (ψ `  x )  e.  RR  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
4442, 43mpancom 653 . . . . . . 7  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  RR )
4544recnd 8741 . . . . . 6  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  CC )
4645adantl 454 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  CC )
4720, 32subcld 9037 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  CC )
4847adantl 454 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  CC )
4940adantr 453 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
5018, 49remulcld 8743 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  e.  RR )
51 nndivre 9661 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
5240, 14, 51syl2an 465 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
53 reflcl 10806 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  e.  RR )
5452, 53syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
5517, 54remulcld 8743 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) )  e.  RR )
5650, 55resubcld 9091 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  e.  RR )
5752, 54resubcld 9091 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  e.  RR )
5836a1i 12 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
59 vmage0 20191 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
6015, 59syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
61 fracle1 10813 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  <_  1 )
6252, 61syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  <_ 
1 )
6357, 58, 17, 60, 62lemul2ad 9577 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  <_  ( (Λ `  n )  x.  1 ) )
6417recnd 8741 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6552recnd 8741 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
6654recnd 8741 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
6764, 65, 66subdid 9115 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( (Λ `  n )  x.  ( x  /  n
) )  -  (
(Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
68 rpcn 10241 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  CC )
6968adantr 453 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
7015nnrpd 10268 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
71 rpcnne0 10250 . . . . . . . . . . . . . . 15  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
7270, 71syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
73 div23 9323 . . . . . . . . . . . . . . 15  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  x.  x )  /  n )  =  ( ( (Λ `  n
)  /  n )  x.  x ) )
74 divass 9322 . . . . . . . . . . . . . . 15  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  x.  x )  /  n )  =  ( (Λ `  n
)  x.  ( x  /  n ) ) )
7573, 74eqtr3d 2287 . . . . . . . . . . . . . 14  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  /  n )  x.  x )  =  ( (Λ `  n
)  x.  ( x  /  n ) ) )
7664, 69, 72, 75syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  =  ( (Λ `  n )  x.  (
x  /  n ) ) )
7776oveq1d 5725 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  =  ( ( (Λ `  n )  x.  ( x  /  n
) )  -  (
(Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
7867, 77eqtr4d 2288 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
7964mulid1d 8732 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  1 )  =  (Λ `  n
) )
8063, 78, 793brtr3d 3949 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  <_  (Λ `  n
) )
8113, 56, 17, 80fsumle 12134 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  x )  -  ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n )
)
8218recnd 8741 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
8313, 68, 82fsummulc1 12124 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  x ) )
84 logfac2 20288 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( log `  ( ! `  ( |_ `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )
8523, 84syl 17 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )
8683, 85oveq12d 5728 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  x )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
8750recnd 8741 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  e.  CC )
8855recnd 8741 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) )  e.  CC )
8913, 87, 88fsumsub 12127 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  x )  -  ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  x
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) ) )
9086, 89eqtr4d 2288 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
91 chpval 20192 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (ψ `  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) (Λ `  n
) )
9240, 91syl 17 . . . . . . . . 9  |-  ( x  e.  RR+  ->  (ψ `  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) (Λ `  n
) )
9381, 90, 923brtr4d 3950 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  <_  (ψ `  x ) )
9419, 40remulcld 8743 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  e.  RR )
9594, 29resubcld 9091 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  e.  RR )
96 rpregt0 10246 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
97 lediv1 9501 . . . . . . . . 9  |-  ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  e.  RR  /\  (ψ `  x )  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  -> 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  <_  (ψ `  x
)  <->  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
)  <_  ( (ψ `  x )  /  x
) ) )
9895, 42, 96, 97syl3anc 1187 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  <_  (ψ `  x
)  <->  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
)  <_  ( (ψ `  x )  /  x
) ) )
9993, 98mpbid 203 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  <_  ( (ψ `  x )  /  x
) )
10094recnd 8741 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  e.  CC )
10129recnd 8741 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  CC )
102 rpcnne0 10250 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
103 divsubdir 9336 . . . . . . . . . . 11  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  e.  CC  /\  ( log `  ( ! `  ( |_ `  x ) ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
104100, 101, 102, 103syl3anc 1187 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
105 rpne0 10248 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  =/=  0 )
10620, 68, 105divcan4d 9422 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
107106oveq1d 5725 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  /  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
108104, 107eqtr2d 2286 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
) )
109108fveq2d 5381 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( abs `  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) ) )
110 rerpdivcl 10260 . . . . . . . . . 10  |-  ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  e.  RR  /\  x  e.  RR+ )  -> 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x )  e.  RR )
11195, 110mpancom 653 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  e.  RR )
112 flle 10809 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  <_ 
( x  /  n
) )
11352, 112syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) )
11452, 54subge0d 9242 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  <->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) ) )
115113, 114mpbird 225 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )
11617, 57, 60, 115mulge0d 9229 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) ) )
117116, 78breqtrd 3944 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
11813, 56, 117fsumge0 12130 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  0  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
119118, 90breqtrrd 3946 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  <_ 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) ) )
120 divge0 9505 . . . . . . . . . 10  |-  ( ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  e.  RR  /\  0  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) ) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
12195, 119, 96, 120syl21anc 1186 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x ) )
122111, 121absidd 11782 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
123109, 122eqtrd 2285 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
124 chpge0 20196 . . . . . . . . . 10  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
12540, 124syl 17 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
(ψ `  x )
)
126 divge0 9505 . . . . . . . . 9  |-  ( ( ( (ψ `  x
)  e.  RR  /\  0  <_  (ψ `  x
) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
(ψ `  x )  /  x ) )
12742, 125, 96, 126syl21anc 1186 . . . . . . . 8  |-  ( x  e.  RR+  ->  0  <_ 
( (ψ `  x
)  /  x ) )
12844, 127absidd 11782 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  ( (ψ `  x
)  /  x ) )  =  ( (ψ `  x )  /  x
) )
12999, 123, 1283brtr4d 3950 . . . . . 6  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  <_  ( abs `  ( (ψ `  x )  /  x
) ) )
130129ad2antrl 711 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  <_  ( abs `  ( (ψ `  x
)  /  x ) ) )
13137, 39, 46, 48, 130o1le 12003 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O
( 1 ) )
132131trud 1320 . . 3  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  e.  O ( 1 )
133 logfacrlim 20295 . . . 4  |-  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  ~~> r  1
134 rlimo1 11967 . . . 4  |-  ( ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  ~~> r  1  ->  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O ( 1 ) )
135133, 134ax-mp 10 . . 3  |-  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O
( 1 )
136 o1sub 11966 . . 3  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O
( 1 )  /\  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O
( 1 ) )  ->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  o F  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  e.  O ( 1 ) )
137132, 135, 136mp2an 656 . 2  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  o F  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  e.  O ( 1 )
13835, 137eqeltrri 2324 1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 939    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710    o Fcof 5928   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   NN0cn0 9844   RR+crp 10233   ...cfz 10660   |_cfl 10802   !cfa 11166   abscabs 11596    ~~> r crli 11836   O (
1 )co1 11837   sum_csu 12035   logclog 19744  Λcvma 20161  ψcchp 20162
This theorem is referenced by:  vmadivsumb  20464  rpvmasumlem  20468  vmalogdivsum2  20519  vmalogdivsum  20520  2vmadivsumlem  20521  selberg3lem1  20538  selberg4lem1  20541  pntrsumo1  20546  selbergr  20549
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-cht 20166  df-vma 20167  df-chp 20168  df-ppi 20169
  Copyright terms: Public domain W3C validator