MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Structured version   Unicode version

Theorem vmadivsum 24318
Description: The sum of the von Mangoldt function over  n is asymptotic to  log x  +  O(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 9637 . . . . . . 7  |-  RR  e.  _V
2 rpssre 11319 . . . . . . 7  |-  RR+  C_  RR
31, 2ssexi 4569 . . . . . 6  |-  RR+  e.  _V
43a1i 11 . . . . 5  |-  ( T. 
->  RR+  e.  _V )
5 ovex 6333 . . . . . 6  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  _V
65a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  _V )
7 ovex 6333 . . . . . 6  |-  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  e.  _V
87a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  e.  _V )
9 eqidd 2423 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) ) )
10 eqidd 2423 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  x
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )
114, 6, 8, 9, 10offval2 6562 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) ) )
1211trud 1446 . . 3  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )
13 fzfid 12192 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
14 elfznn 11835 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1514adantl 467 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
16 vmacl 24043 . . . . . . . . 9  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1715, 16syl 17 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
1817, 15nndivred 10665 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
1913, 18fsumrecl 13799 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
2019recnd 9676 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
21 relogcl 23523 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2221recnd 9676 . . . . 5  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
23 rprege0 11323 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
24 flge0nn0 12060 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
25 faccl 12475 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ! `
 ( |_ `  x ) )  e.  NN )
2623, 24, 253syl 18 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ! `
 ( |_ `  x ) )  e.  NN )
2726nnrpd 11346 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ! `
 ( |_ `  x ) )  e.  RR+ )
2827relogcld 23570 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR )
29 rerpdivcl 11337 . . . . . . 7  |-  ( ( ( log `  ( ! `  ( |_ `  x ) ) )  e.  RR  /\  x  e.  RR+ )  ->  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x )  e.  RR )
3028, 29mpancom 673 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x )  e.  RR )
3130recnd 9676 . . . . 5  |-  ( x  e.  RR+  ->  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x )  e.  CC )
3220, 22, 31nnncan2d 10028 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
3332mpteq2ia 4506 . . 3  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  -  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )
3412, 33eqtri 2451 . 2  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )
35 1red 9665 . . . . 5  |-  ( T. 
->  1  e.  RR )
36 chpo1ub 24316 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O(1)
3736a1i 11 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1) )
38 rpre 11315 . . . . . . . . 9  |-  ( x  e.  RR+  ->  x  e.  RR )
39 chpcl 24049 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
4038, 39syl 17 . . . . . . . 8  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
41 rerpdivcl 11337 . . . . . . . 8  |-  ( ( (ψ `  x )  e.  RR  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
4240, 41mpancom 673 . . . . . . 7  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  RR )
4342recnd 9676 . . . . . 6  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  CC )
4443adantl 467 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  CC )
4520, 31subcld 9993 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  CC )
4645adantl 467 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  e.  CC )
4738adantr 466 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
4818, 47remulcld 9678 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  e.  RR )
49 nndivre 10652 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
5038, 14, 49syl2an 479 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
51 reflcl 12038 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  e.  RR )
5250, 51syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
5317, 52remulcld 9678 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) )  e.  RR )
5448, 53resubcld 10054 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  e.  RR )
5550, 52resubcld 10054 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  e.  RR )
56 1red 9665 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
57 vmage0 24046 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
5815, 57syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
59 fracle1 12045 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR  ->  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  <_  1 )
6050, 59syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  <_ 
1 )
6155, 56, 17, 58, 60lemul2ad 10554 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  <_  ( (Λ `  n )  x.  1 ) )
6217recnd 9676 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6350recnd 9676 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
6452recnd 9676 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
6562, 63, 64subdid 10081 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( (Λ `  n )  x.  ( x  /  n
) )  -  (
(Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
66 rpcn 11317 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  CC )
6766adantr 466 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
6815nnrpd 11346 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
69 rpcnne0 11326 . . . . . . . . . . . . . . 15  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
7068, 69syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
71 div23 10296 . . . . . . . . . . . . . . 15  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  x.  x )  /  n )  =  ( ( (Λ `  n
)  /  n )  x.  x ) )
72 divass 10295 . . . . . . . . . . . . . . 15  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  x.  x )  /  n )  =  ( (Λ `  n
)  x.  ( x  /  n ) ) )
7371, 72eqtr3d 2465 . . . . . . . . . . . . . 14  |-  ( ( (Λ `  n )  e.  CC  /\  x  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( ( (Λ `  n
)  /  n )  x.  x )  =  ( (Λ `  n
)  x.  ( x  /  n ) ) )
7462, 67, 70, 73syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  =  ( (Λ `  n )  x.  (
x  /  n ) ) )
7574oveq1d 6320 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  =  ( ( (Λ `  n )  x.  ( x  /  n
) )  -  (
(Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
7665, 75eqtr4d 2466 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
7762mulid1d 9667 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  1 )  =  (Λ `  n
) )
7861, 76, 773brtr3d 4453 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( (Λ `  n )  /  n )  x.  x
)  -  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) ) )  <_  (Λ `  n
) )
7913, 54, 17, 78fsumle 13858 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  x )  -  ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n )
)
8018recnd 9676 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
8113, 66, 80fsummulc1 13845 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  x ) )
82 logfac2 24143 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( log `  ( ! `  ( |_ `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )
8323, 82syl 17 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )
8481, 83oveq12d 6323 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  x )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
8548recnd 9676 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  x
)  e.  CC )
8653recnd 9676 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( |_ `  ( x  /  n ) ) )  e.  CC )
8713, 85, 86fsumsub 13848 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n )  /  n
)  x.  x )  -  ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  x
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( |_
`  ( x  /  n ) ) ) ) )
8884, 87eqtr4d 2466 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
89 chpval 24047 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (ψ `  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) (Λ `  n
) )
9038, 89syl 17 . . . . . . . . 9  |-  ( x  e.  RR+  ->  (ψ `  x )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) (Λ `  n
) )
9179, 88, 903brtr4d 4454 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  <_  (ψ `  x ) )
9219, 38remulcld 9678 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  e.  RR )
9392, 28resubcld 10054 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  e.  RR )
94 rpregt0 11322 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
95 lediv1 10477 . . . . . . . . 9  |-  ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  e.  RR  /\  (ψ `  x )  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  -> 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  <_  (ψ `  x
)  <->  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
)  <_  ( (ψ `  x )  /  x
) ) )
9693, 40, 94, 95syl3anc 1264 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  <_  (ψ `  x
)  <->  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
)  <_  ( (ψ `  x )  /  x
) ) )
9791, 96mpbid 213 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  <_  ( (ψ `  x )  /  x
) )
9892recnd 9676 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  e.  CC )
9928recnd 9676 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ! `  ( |_ `  x ) ) )  e.  CC )
100 rpcnne0 11326 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
101 divsubdir 10310 . . . . . . . . . . 11  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  e.  CC  /\  ( log `  ( ! `  ( |_ `  x ) ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
10298, 99, 100, 101syl3anc 1264 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
103 rpne0 11324 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  =/=  0 )
10420, 66, 103divcan4d 10396 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
105104oveq1d 6320 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  /  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )
106102, 105eqtr2d 2464 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) )  =  ( ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  x.  x
)  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x
) )
107106fveq2d 5885 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( abs `  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) ) )
108 rerpdivcl 11337 . . . . . . . . . 10  |-  ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  e.  RR  /\  x  e.  RR+ )  -> 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x )  e.  RR )
10993, 108mpancom 673 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x )  e.  RR )
110 flle 12041 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  <_ 
( x  /  n
) )
11150, 110syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) )
11250, 52subge0d 10210 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  <->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) ) )
113111, 112mpbird 235 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )
11417, 55, 58, 113mulge0d 10197 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) ) )
115114, 76breqtrd 4448 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
11613, 54, 115fsumge0 13854 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  0  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( (Λ `  n
)  /  n )  x.  x )  -  ( (Λ `  n )  x.  ( |_ `  (
x  /  n ) ) ) ) )
117116, 88breqtrrd 4450 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  <_ 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) ) )
118 divge0 10481 . . . . . . . . . 10  |-  ( ( ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  e.  RR  /\  0  <_  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) ) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
11993, 117, 94, 118syl21anc 1263 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x ) )
120109, 119absidd 13484 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  x.  x )  -  ( log `  ( ! `  ( |_ `  x ) ) ) )  /  x ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
121107, 120eqtrd 2463 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  =  ( ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  x.  x )  -  ( log `  ( ! `
 ( |_ `  x ) ) ) )  /  x ) )
122 chpge0 24051 . . . . . . . . . 10  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
12338, 122syl 17 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
(ψ `  x )
)
124 divge0 10481 . . . . . . . . 9  |-  ( ( ( (ψ `  x
)  e.  RR  /\  0  <_  (ψ `  x
) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
(ψ `  x )  /  x ) )
12540, 123, 94, 124syl21anc 1263 . . . . . . . 8  |-  ( x  e.  RR+  ->  0  <_ 
( (ψ `  x
)  /  x ) )
12642, 125absidd 13484 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  ( (ψ `  x
)  /  x ) )  =  ( (ψ `  x )  /  x
) )
12797, 121, 1263brtr4d 4454 . . . . . 6  |-  ( x  e.  RR+  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  <_  ( abs `  ( (ψ `  x )  /  x
) ) )
128127ad2antrl 732 . . . . 5  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  <_  ( abs `  ( (ψ `  x
)  /  x ) ) )
12935, 37, 44, 46, 128o1le 13715 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1) )
130129trud 1446 . . 3  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  e.  O(1)
131 logfacrlim 24150 . . . 4  |-  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  ~~> r  1
132 rlimo1 13679 . . . 4  |-  ( ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  ~~> r  1  ->  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1) )
133131, 132ax-mp 5 . . 3  |-  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1)
134 o1sub 13678 . . 3  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( ( log `  x
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  e.  O(1) )  -> 
( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  (
( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  e.  O(1) )
135130, 133, 134mp2an 676 . 2  |-  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( ( log `  ( ! `
 ( |_ `  x ) ) )  /  x ) ) )  oF  -  ( x  e.  RR+  |->  ( ( log `  x )  -  ( ( log `  ( ! `  ( |_ `  x ) ) )  /  x ) ) ) )  e.  O(1)
13634, 135eqeltrri 2504 1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   T. wtru 1438    e. wcel 1872    =/= wne 2614   _Vcvv 3080   class class class wbr 4423    |-> cmpt 4482   ` cfv 5601  (class class class)co 6305    oFcof 6543   CCcc 9544   RRcr 9545   0cc0 9546   1c1 9547    x. cmul 9551    < clt 9682    <_ cle 9683    - cmin 9867    / cdiv 10276   NNcn 10616   NN0cn0 10876   RR+crp 11309   ...cfz 11791   |_cfl 12032   !cfa 12465   abscabs 13297    ~~> r crli 13548   O(1)co1 13549   sum_csu 13751   logclog 23502  Λcvma 24016  ψcchp 24017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-fi 7934  df-sup 7965  df-inf 7966  df-oi 8034  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ioc 11647  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12034  df-mod 12103  df-seq 12220  df-exp 12279  df-fac 12466  df-bc 12494  df-hash 12522  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13525  df-clim 13551  df-rlim 13552  df-o1 13553  df-lo1 13554  df-sum 13752  df-ef 14120  df-e 14121  df-sin 14122  df-cos 14123  df-pi 14125  df-dvds 14305  df-gcd 14468  df-prm 14622  df-pc 14786  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-hom 15213  df-cco 15214  df-rest 15320  df-topn 15321  df-0g 15339  df-gsum 15340  df-topgen 15341  df-pt 15342  df-prds 15345  df-xrs 15399  df-qtop 15405  df-imas 15406  df-xps 15409  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-submnd 16582  df-mulg 16675  df-cntz 16970  df-cmn 17431  df-psmet 18961  df-xmet 18962  df-met 18963  df-bl 18964  df-mopn 18965  df-fbas 18966  df-fg 18967  df-cnfld 18970  df-top 19919  df-bases 19920  df-topon 19921  df-topsp 19922  df-cld 20032  df-ntr 20033  df-cls 20034  df-nei 20112  df-lp 20150  df-perf 20151  df-cn 20241  df-cnp 20242  df-haus 20329  df-cmp 20400  df-tx 20575  df-hmeo 20768  df-fil 20859  df-fm 20951  df-flim 20952  df-flf 20953  df-xms 21333  df-ms 21334  df-tms 21335  df-cncf 21908  df-limc 22819  df-dv 22820  df-log 23504  df-cxp 23505  df-cht 24021  df-vma 24022  df-chp 24023  df-ppi 24024
This theorem is referenced by:  vmadivsumb  24319  rpvmasumlem  24323  vmalogdivsum2  24374  vmalogdivsum  24375  2vmadivsumlem  24376  selberg3lem1  24393  selberg4lem1  24396  pntrsumo1  24401  selbergr  24404
  Copyright terms: Public domain W3C validator