MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitali Structured version   Unicode version

Theorem vitali 22148
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
vitali  |-  (  .<  We  RR  ->  dom  vol  C.  ~P RR )

Proof of Theorem vitali
Dummy variables  a 
b  c  f  g  m  n  s  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9600 . . . 4  |-  RR  e.  _V
21pwex 4639 . . 3  |-  ~P RR  e.  _V
3 weinxp 5076 . . . . 5  |-  (  .<  We  RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  RR )
4 unipw 4706 . . . . . 6  |-  U. ~P RR  =  RR
5 weeq2 4877 . . . . . 6  |-  ( U. ~P RR  =  RR  ->  ( (  .<  i^i  ( RR  X.  RR ) )  We  U. ~P RR  <->  ( 
.<  i^i  ( RR  X.  RR ) )  We  RR ) )
64, 5ax-mp 5 . . . . 5  |-  ( ( 
.<  i^i  ( RR  X.  RR ) )  We  U. ~P RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  RR )
73, 6bitr4i 252 . . . 4  |-  (  .<  We  RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  U. ~P RR )
81, 1xpex 6603 . . . . . 6  |-  ( RR 
X.  RR )  e. 
_V
98inex2 4598 . . . . 5  |-  (  .<  i^i  ( RR  X.  RR ) )  e.  _V
10 weeq1 4876 . . . . 5  |-  ( x  =  (  .<  i^i  ( RR  X.  RR ) )  ->  ( x  We 
U. ~P RR  <->  (  .<  i^i  ( RR  X.  RR ) )  We  U. ~P RR ) )
119, 10spcev 3201 . . . 4  |-  ( ( 
.<  i^i  ( RR  X.  RR ) )  We  U. ~P RR  ->  E. x  x  We  U. ~P RR )
127, 11sylbi 195 . . 3  |-  (  .<  We  RR  ->  E. x  x  We  U. ~P RR )
13 dfac8c 8431 . . 3  |-  ( ~P RR  e.  _V  ->  ( E. x  x  We 
U. ~P RR  ->  E. f A. z  e. 
~P  RR ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
142, 12, 13mpsyl 63 . 2  |-  (  .<  We  RR  ->  E. f A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
15 qex 11219 . . . . . . 7  |-  QQ  e.  _V
1615inex1 4597 . . . . . 6  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  e. 
_V
17 nnrecq 11230 . . . . . . . 8  |-  ( x  e.  NN  ->  (
1  /  x )  e.  QQ )
18 nnrecre 10593 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
1  /  x )  e.  RR )
19 neg1rr 10661 . . . . . . . . . . 11  |-  -u 1  e.  RR
2019a1i 11 . . . . . . . . . 10  |-  ( x  e.  NN  ->  -u 1  e.  RR )
21 0re 9613 . . . . . . . . . . 11  |-  0  e.  RR
2221a1i 11 . . . . . . . . . 10  |-  ( x  e.  NN  ->  0  e.  RR )
23 neg1lt0 10663 . . . . . . . . . . . 12  |-  -u 1  <  0
2419, 21, 23ltleii 9724 . . . . . . . . . . 11  |-  -u 1  <_  0
2524a1i 11 . . . . . . . . . 10  |-  ( x  e.  NN  ->  -u 1  <_  0 )
26 nnrp 11254 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  RR+ )
2726rpreccld 11291 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
1  /  x )  e.  RR+ )
2827rpge0d 11285 . . . . . . . . . 10  |-  ( x  e.  NN  ->  0  <_  ( 1  /  x
) )
2920, 22, 18, 25, 28letrd 9756 . . . . . . . . 9  |-  ( x  e.  NN  ->  -u 1  <_  ( 1  /  x
) )
30 nnge1 10582 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  1  <_  x )
31 nnre 10563 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  RR )
32 nngt0 10585 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  0  <  x )
33 1re 9612 . . . . . . . . . . . . 13  |-  1  e.  RR
34 0lt1 10096 . . . . . . . . . . . . 13  |-  0  <  1
35 lerec 10447 . . . . . . . . . . . . 13  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( 1  <_  x  <->  ( 1  /  x )  <_  ( 1  / 
1 ) ) )
3633, 34, 35mpanl12 682 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <  x )  -> 
( 1  <_  x  <->  ( 1  /  x )  <_  ( 1  / 
1 ) ) )
3731, 32, 36syl2anc 661 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
1  <_  x  <->  ( 1  /  x )  <_ 
( 1  /  1
) ) )
3830, 37mpbid 210 . . . . . . . . . 10  |-  ( x  e.  NN  ->  (
1  /  x )  <_  ( 1  / 
1 ) )
39 1div1e1 10258 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
4038, 39syl6breq 4495 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
1  /  x )  <_  1 )
4119, 33elicc2i 11615 . . . . . . . . 9  |-  ( ( 1  /  x )  e.  ( -u 1 [,] 1 )  <->  ( (
1  /  x )  e.  RR  /\  -u 1  <_  ( 1  /  x
)  /\  ( 1  /  x )  <_ 
1 ) )
4218, 29, 40, 41syl3anbrc 1180 . . . . . . . 8  |-  ( x  e.  NN  ->  (
1  /  x )  e.  ( -u 1 [,] 1 ) )
4317, 42elind 3684 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  /  x )  e.  ( QQ  i^i  ( -u 1 [,] 1
) ) )
44 oveq2 6304 . . . . . . . . 9  |-  ( ( 1  /  x )  =  ( 1  / 
y )  ->  (
1  /  ( 1  /  x ) )  =  ( 1  / 
( 1  /  y
) ) )
45 nncn 10564 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  CC )
46 nnne0 10589 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  =/=  0 )
4745, 46recrecd 10338 . . . . . . . . . 10  |-  ( x  e.  NN  ->  (
1  /  ( 1  /  x ) )  =  x )
48 nncn 10564 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
49 nnne0 10589 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  =/=  0 )
5048, 49recrecd 10338 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
1  /  ( 1  /  y ) )  =  y )
5147, 50eqeqan12d 2480 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( 1  / 
( 1  /  x
) )  =  ( 1  /  ( 1  /  y ) )  <-> 
x  =  y ) )
5244, 51syl5ib 219 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( 1  /  x )  =  ( 1  /  y )  ->  x  =  y ) )
53 oveq2 6304 . . . . . . . 8  |-  ( x  =  y  ->  (
1  /  x )  =  ( 1  / 
y ) )
5452, 53impbid1 203 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( 1  /  x )  =  ( 1  /  y )  <-> 
x  =  y ) )
5543, 54dom2 7577 . . . . . 6  |-  ( ( QQ  i^i  ( -u
1 [,] 1 ) )  e.  _V  ->  NN  ~<_  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
5616, 55ax-mp 5 . . . . 5  |-  NN  ~<_  ( QQ 
i^i  ( -u 1 [,] 1 ) )
57 inss1 3714 . . . . . . 7  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  QQ
58 ssdomg 7580 . . . . . . 7  |-  ( QQ  e.  _V  ->  (
( QQ  i^i  ( -u 1 [,] 1 ) )  C_  QQ  ->  ( QQ  i^i  ( -u
1 [,] 1 ) )  ~<_  QQ ) )
5915, 57, 58mp2 9 . . . . . 6  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  ~<_  QQ
60 qnnen 13959 . . . . . 6  |-  QQ  ~~  NN
61 domentr 7593 . . . . . 6  |-  ( ( ( QQ  i^i  ( -u 1 [,] 1 ) )  ~<_  QQ  /\  QQ  ~~  NN )  ->  ( QQ 
i^i  ( -u 1 [,] 1 ) )  ~<_  NN )
6259, 60, 61mp2an 672 . . . . 5  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  ~<_  NN
63 sbth 7656 . . . . 5  |-  ( ( NN  ~<_  ( QQ  i^i  ( -u 1 [,] 1
) )  /\  ( QQ  i^i  ( -u 1 [,] 1 ) )  ~<_  NN )  ->  NN  ~~  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
6456, 62, 63mp2an 672 . . . 4  |-  NN  ~~  ( QQ  i^i  ( -u 1 [,] 1 ) )
65 bren 7544 . . . 4  |-  ( NN 
~~  ( QQ  i^i  ( -u 1 [,] 1
) )  <->  E. g 
g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
6664, 65mpbi 208 . . 3  |-  E. g 
g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )
67 eleq1 2529 . . . . . . . . . . . . 13  |-  ( a  =  x  ->  (
a  e.  ( 0 [,] 1 )  <->  x  e.  ( 0 [,] 1
) ) )
68 eleq1 2529 . . . . . . . . . . . . 13  |-  ( b  =  y  ->  (
b  e.  ( 0 [,] 1 )  <->  y  e.  ( 0 [,] 1
) ) )
6967, 68bi2anan9 873 . . . . . . . . . . . 12  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( a  e.  ( 0 [,] 1
)  /\  b  e.  ( 0 [,] 1
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) ) )
70 oveq12 6305 . . . . . . . . . . . . 13  |-  ( ( a  =  x  /\  b  =  y )  ->  ( a  -  b
)  =  ( x  -  y ) )
7170eleq1d 2526 . . . . . . . . . . . 12  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( a  -  b )  e.  QQ  <->  ( x  -  y )  e.  QQ ) )
7269, 71anbi12d 710 . . . . . . . . . . 11  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ )  <->  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) ) )
7372cbvopabv 4526 . . . . . . . . . 10  |-  { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) }  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
74 eqid 2457 . . . . . . . . . 10  |-  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  =  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )
75 fvex 5882 . . . . . . . . . . . 12  |-  ( f `
 c )  e. 
_V
76 eqid 2457 . . . . . . . . . . . 12  |-  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  =  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )
7775, 76fnmpti 5715 . . . . . . . . . . 11  |-  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  Fn  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )
7877a1i 11 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  Fn  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) )
79 neeq1 2738 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  =/=  (/)  <->  w  =/=  (/) ) )
80 fveq2 5872 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
f `  z )  =  ( f `  w ) )
81 id 22 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  z  =  w )
8280, 81eleq12d 2539 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
( f `  z
)  e.  z  <->  ( f `  w )  e.  w
) )
8379, 82imbi12d 320 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  ( w  =/=  (/)  ->  ( f `  w )  e.  w
) ) )
8483cbvralv 3084 . . . . . . . . . . . . 13  |-  ( A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  A. w  e.  ~P  RR ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
8573vitalilem1 22143 . . . . . . . . . . . . . . . . . 18  |-  { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) }  Er  ( 0 [,] 1
)
8685a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( T. 
->  { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) }  Er  (
0 [,] 1 ) )
8786qsss 7390 . . . . . . . . . . . . . . . 16  |-  ( T. 
->  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  C_  ~P (
0 [,] 1 ) )
8887trud 1404 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
C_  ~P ( 0 [,] 1 )
89 unitssre 11692 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  RR
90 sspwb 4705 . . . . . . . . . . . . . . . 16  |-  ( ( 0 [,] 1 ) 
C_  RR  <->  ~P ( 0 [,] 1 )  C_  ~P RR )
9189, 90mpbi 208 . . . . . . . . . . . . . . 15  |-  ~P (
0 [,] 1 ) 
C_  ~P RR
9288, 91sstri 3508 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
C_  ~P RR
93 ssralv 3560 . . . . . . . . . . . . . 14  |-  ( ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
C_  ~P RR  ->  ( A. w  e.  ~P  RR ( w  =/=  (/)  ->  (
f `  w )  e.  w )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( f `  w )  e.  w
) ) )
9492, 93ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. w  e.  ~P  RR ( w  =/=  (/)  ->  (
f `  w )  e.  w )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
9584, 94sylbi 195 . . . . . . . . . . . 12  |-  ( A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( f `  w )  e.  w
) )
96 fveq2 5872 . . . . . . . . . . . . . . . 16  |-  ( c  =  w  ->  (
f `  c )  =  ( f `  w ) )
97 fvex 5882 . . . . . . . . . . . . . . . 16  |-  ( f `
 w )  e. 
_V
9896, 76, 97fvmpt 5956 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  =  ( f `
 w ) )
9998eleq1d 2526 . . . . . . . . . . . . . 14  |-  ( w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  ->  (
( ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) ) `  w )  e.  w  <->  ( f `  w )  e.  w ) )
10099imbi2d 316 . . . . . . . . . . . . 13  |-  ( w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  ->  (
( w  =/=  (/)  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  e.  w )  <-> 
( w  =/=  (/)  ->  (
f `  w )  e.  w ) ) )
101100ralbiia 2887 . . . . . . . . . . . 12  |-  ( A. w  e.  ( (
0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  e.  w )  <->  A. w  e.  (
( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  (
f `  w )  e.  w ) )
10295, 101sylibr 212 . . . . . . . . . . 11  |-  ( A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  A. w  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  ( ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) `
 w )  e.  w ) )
103102ad2antlr 726 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  A. w  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) ( w  =/=  (/)  ->  (
( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) `  w
)  e.  w ) )
104 simprl 756 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
105 oveq1 6303 . . . . . . . . . . . . . 14  |-  ( t  =  s  ->  (
t  -  ( g `
 m ) )  =  ( s  -  ( g `  m
) ) )
106105eleq1d 2526 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  (
( t  -  (
g `  m )
)  e.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  <->  ( s  -  ( g `  m ) )  e. 
ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) ) ) )
107106cbvrabv 3108 . . . . . . . . . . . 12  |-  { t  e.  RR  |  ( t  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }  =  { s  e.  RR  |  ( s  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }
108 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  (
g `  m )  =  ( g `  n ) )
109108oveq2d 6312 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
s  -  ( g `
 m ) )  =  ( s  -  ( g `  n
) ) )
110109eleq1d 2526 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( s  -  (
g `  m )
)  e.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  <->  ( s  -  ( g `  n ) )  e. 
ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) ) ) )
111110rabbidv 3101 . . . . . . . . . . . 12  |-  ( m  =  n  ->  { s  e.  RR  |  ( s  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }  =  { s  e.  RR  |  ( s  -  ( g `
 n ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) } )
112107, 111syl5eq 2510 . . . . . . . . . . 11  |-  ( m  =  n  ->  { t  e.  RR  |  ( t  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) }  =  { s  e.  RR  |  ( s  -  ( g `
 n ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) } )
113112cbvmptv 4548 . . . . . . . . . 10  |-  ( m  e.  NN  |->  { t  e.  RR  |  ( t  -  ( g `
 m ) )  e.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) ) } )  =  ( n  e.  NN  |->  { s  e.  RR  | 
( s  -  (
g `  n )
)  e.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) ) } )
114 simprr 757 . . . . . . . . . 10  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  e.  ( ~P RR  \  dom  vol ) )
11573, 74, 78, 103, 104, 113, 114vitalilem5 22147 . . . . . . . . 9  |-  -.  (
(  .<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )
116115pm2.21i 131 . . . . . . . 8  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  ( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) ) )  ->  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol ) )
117116expr 615 . . . . . . 7  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )  ->  ( -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e.  ( ~P RR  \  dom  vol )  ->  ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol ) ) )
118117pm2.18d 111 . . . . . 6  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )  ->  ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol ) )
119 eldif 3481 . . . . . . 7  |-  ( ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol )  <->  ( ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ~P RR  /\  -.  ran  (
c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  dom  vol ) )
120 mblss 22068 . . . . . . . . . 10  |-  ( x  e.  dom  vol  ->  x 
C_  RR )
121 selpw 4022 . . . . . . . . . 10  |-  ( x  e.  ~P RR  <->  x  C_  RR )
122120, 121sylibr 212 . . . . . . . . 9  |-  ( x  e.  dom  vol  ->  x  e.  ~P RR )
123122ssriv 3503 . . . . . . . 8  |-  dom  vol  C_ 
~P RR
124 ssnelpss 3893 . . . . . . . 8  |-  ( dom 
vol  C_  ~P RR  ->  ( ( ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b
>.  |  ( (
a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } )  |->  ( f `
 c ) )  e.  ~P RR  /\  -.  ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e. 
dom  vol )  ->  dom  vol  C.  ~P RR ) )
125123, 124ax-mp 5 . . . . . . 7  |-  ( ( ran  ( c  e.  ( ( 0 [,] 1 ) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1
) )  /\  (
a  -  b )  e.  QQ ) } )  |->  ( f `  c ) )  e. 
~P RR  /\  -.  ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  dom  vol )  ->  dom  vol  C.  ~P RR )
126119, 125sylbi 195 . . . . . 6  |-  ( ran  ( c  e.  ( ( 0 [,] 1
) /. { <. a ,  b >.  |  ( ( a  e.  ( 0 [,] 1 )  /\  b  e.  ( 0 [,] 1 ) )  /\  ( a  -  b )  e.  QQ ) } ) 
|->  ( f `  c
) )  e.  ( ~P RR  \  dom  vol )  ->  dom  vol  C.  ~P RR )
127118, 126syl 16 . . . . 5  |-  ( ( (  .<  We  RR  /\ 
A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  /\  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )  ->  dom  vol  C.  ~P RR )
128127ex 434 . . . 4  |-  ( ( 
.<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  dom  vol  C.  ~P RR ) )
129128exlimdv 1725 . . 3  |-  ( ( 
.<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  -> 
( E. g  g : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  dom  vol  C.  ~P RR ) )
13066, 129mpi 17 . 2  |-  ( ( 
.<  We  RR  /\  A. z  e.  ~P  RR ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )  ->  dom  vol  C.  ~P RR )
13114, 130exlimddv 1727 1  |-  (  .<  We  RR  ->  dom  vol  C.  ~P RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   T. wtru 1396   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811   _Vcvv 3109    \ cdif 3468    i^i cin 3470    C_ wss 3471    C. wpss 3472   (/)c0 3793   ~Pcpw 4015   U.cuni 4251   class class class wbr 4456   {copab 4514    |-> cmpt 4515    We wwe 4846    X. cxp 5006   dom cdm 5008   ran crn 5009    Fn wfn 5589   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    Er wer 7326   /.cqs 7328    ~~ cen 7532    ~<_ cdom 7533   RRcr 9508   0cc0 9509   1c1 9510    < clt 9645    <_ cle 9646    - cmin 9824   -ucneg 9825    / cdiv 10227   NNcn 10556   QQcq 11207   [,]cicc 11557   volcvol 22001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324  df-sum 13521  df-rest 14840  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-cmp 20014  df-ovol 22002  df-vol 22003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator