Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  viin Structured version   Visualization version   Unicode version

Theorem viin 4328
 Description: Indexed intersection with a universal index class. When doesn't depend on , this evaluates to by 19.3 1986 and abid2 2593. When , this evaluates to by intiin 4323 and intv 4577. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
viin
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem viin
StepHypRef Expression
1 df-iin 4272 . 2
2 ralv 3047 . . 3
32abbii 2587 . 2
41, 3eqtri 2493 1
 Colors of variables: wff setvar class Syntax hints:  wal 1450   wceq 1452   wcel 1904  cab 2457  wral 2756  cvv 3031  ciin 4270 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-ral 2761  df-v 3033  df-iin 4272 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator