MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem3 Structured version   Unicode version

Theorem vdwnnlem3 14392
Description: Lemma for vdwnn 14393. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1  |-  ( ph  ->  R  e.  Fin )
vdwnn.2  |-  ( ph  ->  F : NN --> R )
vdwnn.3  |-  S  =  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) }
vdwnn.4  |-  ( ph  ->  A. c  e.  R  S  =/=  (/) )
Assertion
Ref Expression
vdwnnlem3  |-  -.  ph
Distinct variable groups:    a, d,
k, m, c    ph, a,
c, d    R, a,
c, d    F, a    k, c, F, d, m    S, a, d, k, m
Allowed substitution hints:    ph( k, m)    R( k, m)    S( c)

Proof of Theorem vdwnnlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vdwnn.1 . . 3  |-  ( ph  ->  R  e.  Fin )
2 vdwnn.3 . . . . . . 7  |-  S  =  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) }
3 ssrab2 3570 . . . . . . 7  |-  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) }  C_  NN
42, 3eqsstri 3519 . . . . . 6  |-  S  C_  NN
5 nnuz 11125 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
64, 5sseqtri 3521 . . . . . . 7  |-  S  C_  ( ZZ>= `  1 )
7 vdwnn.4 . . . . . . . 8  |-  ( ph  ->  A. c  e.  R  S  =/=  (/) )
87r19.21bi 2812 . . . . . . 7  |-  ( (
ph  /\  c  e.  R )  ->  S  =/=  (/) )
9 infmssuzcl 11174 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= ` 
1 )  /\  S  =/=  (/) )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)
106, 8, 9sylancr 663 . . . . . 6  |-  ( (
ph  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)
114, 10sseldi 3487 . . . . 5  |-  ( (
ph  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  NN )
1211nnred 10557 . . . 4  |-  ( (
ph  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  RR )
1312ralrimiva 2857 . . 3  |-  ( ph  ->  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  e.  RR )
14 fimaxre3 10498 . . 3  |-  ( ( R  e.  Fin  /\  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  e.  RR )  ->  E. x  e.  RR  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x
)
151, 13, 14syl2anc 661 . 2  |-  ( ph  ->  E. x  e.  RR  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x
)
16 vdwnn.2 . . . . . . . . 9  |-  ( ph  ->  F : NN --> R )
17 1nn 10553 . . . . . . . . 9  |-  1  e.  NN
18 ffvelrn 6014 . . . . . . . . 9  |-  ( ( F : NN --> R  /\  1  e.  NN )  ->  ( F `  1
)  e.  R )
1916, 17, 18sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( F `  1
)  e.  R )
20 ne0i 3776 . . . . . . . 8  |-  ( ( F `  1 )  e.  R  ->  R  =/=  (/) )
2119, 20syl 16 . . . . . . 7  |-  ( ph  ->  R  =/=  (/) )
2221adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  R  =/=  (/) )
23 r19.2z 3904 . . . . . . 7  |-  ( ( R  =/=  (/)  /\  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x
)  ->  E. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x
)
2423ex 434 . . . . . 6  |-  ( R  =/=  (/)  ->  ( A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x  ->  E. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x ) )
2522, 24syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x  ->  E. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x ) )
26 simplr 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  x  e.  RR )
27 fllep1 11917 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  x  <_  ( ( |_ `  x )  +  1 ) )
2912adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  RR )
3026flcld 11914 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ( |_ `  x )  e.  ZZ )
3130peano2zd 10977 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  (
( |_ `  x
)  +  1 )  e.  ZZ )
3231zred 10974 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  (
( |_ `  x
)  +  1 )  e.  RR )
33 letr 9681 . . . . . . . . . 10  |-  ( ( sup ( S ,  RR ,  `'  <  )  e.  RR  /\  x  e.  RR  /\  ( ( |_ `  x )  +  1 )  e.  RR )  ->  (
( sup ( S ,  RR ,  `'  <  )  <_  x  /\  x  <_  ( ( |_
`  x )  +  1 ) )  ->  sup ( S ,  RR ,  `'  <  )  <_ 
( ( |_ `  x )  +  1 ) ) )
3429, 26, 32, 33syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  (
( sup ( S ,  RR ,  `'  <  )  <_  x  /\  x  <_  ( ( |_
`  x )  +  1 ) )  ->  sup ( S ,  RR ,  `'  <  )  <_ 
( ( |_ `  x )  +  1 ) ) )
3528, 34mpan2d 674 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ( sup ( S ,  RR ,  `'  <  )  <_  x  ->  sup ( S ,  RR ,  `'  <  )  <_  ( ( |_
`  x )  +  1 ) ) )
3611adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  NN )
3736nnzd 10973 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  ZZ )
38 eluz 11103 . . . . . . . . . 10  |-  ( ( sup ( S ,  RR ,  `'  <  )  e.  ZZ  /\  (
( |_ `  x
)  +  1 )  e.  ZZ )  -> 
( ( ( |_
`  x )  +  1 )  e.  (
ZZ>= `  sup ( S ,  RR ,  `'  <  ) )  <->  sup ( S ,  RR ,  `'  <  )  <_  (
( |_ `  x
)  +  1 ) ) )
3937, 31, 38syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  (
( ( |_ `  x )  +  1 )  e.  ( ZZ>= `  sup ( S ,  RR ,  `'  <  ) )  <->  sup ( S ,  RR ,  `'  <  )  <_ 
( ( |_ `  x )  +  1 ) ) )
40 simpll 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ph )
4110adantlr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  sup ( S ,  RR ,  `'  <  )  e.  S
)
421, 16, 2vdwnnlem2 14391 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  sup ( S ,  RR ,  `'  <  ) ) )  -> 
( sup ( S ,  RR ,  `'  <  )  e.  S  -> 
( ( |_ `  x )  +  1 )  e.  S ) )
4342impancom 440 . . . . . . . . . 10  |-  ( (
ph  /\  sup ( S ,  RR ,  `'  <  )  e.  S
)  ->  ( (
( |_ `  x
)  +  1 )  e.  ( ZZ>= `  sup ( S ,  RR ,  `'  <  ) )  -> 
( ( |_ `  x )  +  1 )  e.  S ) )
4440, 41, 43syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  (
( ( |_ `  x )  +  1 )  e.  ( ZZ>= `  sup ( S ,  RR ,  `'  <  ) )  ->  ( ( |_
`  x )  +  1 )  e.  S
) )
4539, 44sylbird 235 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ( sup ( S ,  RR ,  `'  <  )  <_ 
( ( |_ `  x )  +  1 )  ->  ( ( |_ `  x )  +  1 )  e.  S
) )
4635, 45syld 44 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ( sup ( S ,  RR ,  `'  <  )  <_  x  ->  ( ( |_
`  x )  +  1 )  e.  S
) )
474sseli 3485 . . . . . . . 8  |-  ( ( ( |_ `  x
)  +  1 )  e.  S  ->  (
( |_ `  x
)  +  1 )  e.  NN )
4847nnnn0d 10858 . . . . . . 7  |-  ( ( ( |_ `  x
)  +  1 )  e.  S  ->  (
( |_ `  x
)  +  1 )  e.  NN0 )
4946, 48syl6 33 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ( sup ( S ,  RR ,  `'  <  )  <_  x  ->  ( ( |_
`  x )  +  1 )  e.  NN0 ) )
5049rexlimdva 2935 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( E. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x  ->  ( ( |_ `  x )  +  1 )  e.  NN0 )
)
511adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  x )  +  1 )  e.  NN0 )  ->  R  e.  Fin )
5216adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  x )  +  1 )  e.  NN0 )  ->  F : NN --> R )
53 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  x )  +  1 )  e.  NN0 )  ->  ( ( |_
`  x )  +  1 )  e.  NN0 )
54 vdwnnlem1 14390 . . . . . . . 8  |-  ( ( R  e.  Fin  /\  F : NN --> R  /\  ( ( |_ `  x )  +  1 )  e.  NN0 )  ->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) )
5551, 52, 53, 54syl3anc 1229 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  x )  +  1 )  e.  NN0 )  ->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) )
5655ex 434 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  x )  +  1 )  e.  NN0  ->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
5756adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( ( |_ `  x
)  +  1 )  e.  NN0  ->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
5825, 50, 573syld 55 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x  ->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
59 oveq1 6288 . . . . . . . . . . . . 13  |-  ( k  =  ( ( |_
`  x )  +  1 )  ->  (
k  -  1 )  =  ( ( ( |_ `  x )  +  1 )  - 
1 ) )
6059oveq2d 6297 . . . . . . . . . . . 12  |-  ( k  =  ( ( |_
`  x )  +  1 )  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) )
6160raleqdv 3046 . . . . . . . . . . 11  |-  ( k  =  ( ( |_
`  x )  +  1 )  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
62612rexbidv 2961 . . . . . . . . . 10  |-  ( k  =  ( ( |_
`  x )  +  1 )  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
6362notbid 294 . . . . . . . . 9  |-  ( k  =  ( ( |_
`  x )  +  1 )  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
6463, 2elrab2 3245 . . . . . . . 8  |-  ( ( ( |_ `  x
)  +  1 )  e.  S  <->  ( (
( |_ `  x
)  +  1 )  e.  NN  /\  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
6564simprbi 464 . . . . . . 7  |-  ( ( ( |_ `  x
)  +  1 )  e.  S  ->  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
6646, 65syl6 33 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  c  e.  R )  ->  ( sup ( S ,  RR ,  `'  <  )  <_  x  ->  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
6766ralimdva 2851 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x  ->  A. c  e.  R  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( ( ( |_ `  x )  +  1 )  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
68 ralnex 2889 . . . . 5  |-  ( A. c  e.  R  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  -.  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
6967, 68syl6ib 226 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x  ->  -.  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
( ( |_ `  x )  +  1 )  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
7058, 69pm2.65d 175 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  -.  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x
)
7170nrexdv 2899 . 2  |-  ( ph  ->  -.  E. x  e.  RR  A. c  e.  R  sup ( S ,  RR ,  `'  <  )  <_  x )
7215, 71pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   {crab 2797    C_ wss 3461   (/)c0 3770   {csn 4014   class class class wbr 4437   `'ccnv 4988   "cima 4992   -->wf 5574   ` cfv 5578  (class class class)co 6281   Fincfn 7518   supcsup 7902   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    < clt 9631    <_ cle 9632    - cmin 9810   NNcn 10542   NN0cn0 10801   ZZcz 10870   ZZ>=cuz 11090   ...cfz 11681   |_cfl 11906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-fz 11682  df-fl 11908  df-hash 12385  df-vdwap 14363  df-vdwmc 14364  df-vdwpc 14365
This theorem is referenced by:  vdwnn  14393
  Copyright terms: Public domain W3C validator