MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnn Structured version   Unicode version

Theorem vdwnn 14908
Description: Van der Waerden's theorem, infinitary version. For any finite coloring  F of the positive integers, there is a color 
c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnn  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Distinct variable groups:    a, c,
d, k, m, F    R, c
Allowed substitution hints:    R( k, m, a, d)

Proof of Theorem vdwnn
Dummy variables  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 758 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  R  e.  Fin )
2 simplr 760 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  F : NN --> R )
3 oveq1 6303 . . . . . . . . . . 11  |-  ( m  =  w  ->  (
m  x.  d )  =  ( w  x.  d ) )
43oveq2d 6312 . . . . . . . . . 10  |-  ( m  =  w  ->  (
a  +  ( m  x.  d ) )  =  ( a  +  ( w  x.  d
) ) )
54eleq1d 2489 . . . . . . . . 9  |-  ( m  =  w  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
65cbvralv 3053 . . . . . . . 8  |-  ( A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) )
7 oveq1 6303 . . . . . . . . . 10  |-  ( a  =  y  ->  (
a  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  d
) ) )
87eleq1d 2489 . . . . . . . . 9  |-  ( a  =  y  ->  (
( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
98ralbidv 2862 . . . . . . . 8  |-  ( a  =  y  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
106, 9syl5bb 260 . . . . . . 7  |-  ( a  =  y  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
11 oveq2 6304 . . . . . . . . . 10  |-  ( d  =  z  ->  (
w  x.  d )  =  ( w  x.  z ) )
1211oveq2d 6312 . . . . . . . . 9  |-  ( d  =  z  ->  (
y  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  z
) ) )
1312eleq1d 2489 . . . . . . . 8  |-  ( d  =  z  ->  (
( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1413ralbidv 2862 . . . . . . 7  |-  ( d  =  z  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1510, 14cbvrex2v 3062 . . . . . 6  |-  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
k  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) )
16 oveq1 6303 . . . . . . . . 9  |-  ( k  =  x  ->  (
k  -  1 )  =  ( x  - 
1 ) )
1716oveq2d 6312 . . . . . . . 8  |-  ( k  =  x  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... (
x  -  1 ) ) )
1817raleqdv 3029 . . . . . . 7  |-  ( k  =  x  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
19182rexbidv 2944 . . . . . 6  |-  ( k  =  x  ->  ( E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2015, 19syl5bb 260 . . . . 5  |-  ( k  =  x  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2120notbid 295 . . . 4  |-  ( k  =  x  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2221cbvrabv 3077 . . 3  |-  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =  { x  e.  NN  |  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
x  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) }
23 simpr 462 . . . . 5  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
24 sneq 4003 . . . . . . . . . . 11  |-  ( c  =  u  ->  { c }  =  { u } )
2524imaeq2d 5179 . . . . . . . . . 10  |-  ( c  =  u  ->  ( `' F " { c } )  =  ( `' F " { u } ) )
2625eleq2d 2490 . . . . . . . . 9  |-  ( c  =  u  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2726ralbidv 2862 . . . . . . . 8  |-  ( c  =  u  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
28272rexbidv 2944 . . . . . . 7  |-  ( c  =  u  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2928ralbidv 2862 . . . . . 6  |-  ( c  =  u  ->  ( A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) ) )
3029cbvrexv 3054 . . . . 5  |-  ( E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3123, 30sylnib 305 . . . 4  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
32 rabn0 3779 . . . . . . 7  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
33 rexnal 2871 . . . . . . 7  |-  ( E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3432, 33bitri 252 . . . . . 6  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3534ralbii 2854 . . . . 5  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
36 ralnex 2869 . . . . 5  |-  ( A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3735, 36bitri 252 . . . 4  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3831, 37sylibr 215 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  A. u  e.  R  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =/=  (/) )
391, 2, 22, 38vdwnnlem3 14907 . 2  |-  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
40 iman 425 . 2  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  <->  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
4139, 40mpbir 212 1  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    e. wcel 1867    =/= wne 2616   A.wral 2773   E.wrex 2774   {crab 2777   (/)c0 3758   {csn 3993   `'ccnv 4844   "cima 4848   -->wf 5588  (class class class)co 6296   Fincfn 7568   0cc0 9528   1c1 9529    + caddc 9531    x. cmul 9533    - cmin 9849   NNcn 10598   ...cfz 11771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-pm 7474  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-sup 7953  df-card 8363  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-nn 10599  df-2 10657  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-fz 11772  df-fl 12014  df-hash 12502  df-vdwap 14878  df-vdwmc 14879  df-vdwpc 14880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator