MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnn Structured version   Unicode version

Theorem vdwnn 14161
Description: Van der Waerden's theorem, infinitary version. For any finite coloring  F of the positive integers, there is a color 
c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnn  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Distinct variable groups:    a, c,
d, k, m, F    R, c
Allowed substitution hints:    R( k, m, a, d)

Proof of Theorem vdwnn
Dummy variables  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  R  e.  Fin )
2 simplr 754 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  F : NN --> R )
3 oveq1 6197 . . . . . . . . . . 11  |-  ( m  =  w  ->  (
m  x.  d )  =  ( w  x.  d ) )
43oveq2d 6206 . . . . . . . . . 10  |-  ( m  =  w  ->  (
a  +  ( m  x.  d ) )  =  ( a  +  ( w  x.  d
) ) )
54eleq1d 2520 . . . . . . . . 9  |-  ( m  =  w  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
65cbvralv 3043 . . . . . . . 8  |-  ( A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) )
7 oveq1 6197 . . . . . . . . . 10  |-  ( a  =  y  ->  (
a  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  d
) ) )
87eleq1d 2520 . . . . . . . . 9  |-  ( a  =  y  ->  (
( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
98ralbidv 2839 . . . . . . . 8  |-  ( a  =  y  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
106, 9syl5bb 257 . . . . . . 7  |-  ( a  =  y  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
11 oveq2 6198 . . . . . . . . . 10  |-  ( d  =  z  ->  (
w  x.  d )  =  ( w  x.  z ) )
1211oveq2d 6206 . . . . . . . . 9  |-  ( d  =  z  ->  (
y  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  z
) ) )
1312eleq1d 2520 . . . . . . . 8  |-  ( d  =  z  ->  (
( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1413ralbidv 2839 . . . . . . 7  |-  ( d  =  z  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1510, 14cbvrex2v 3052 . . . . . 6  |-  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
k  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) )
16 oveq1 6197 . . . . . . . . 9  |-  ( k  =  x  ->  (
k  -  1 )  =  ( x  - 
1 ) )
1716oveq2d 6206 . . . . . . . 8  |-  ( k  =  x  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... (
x  -  1 ) ) )
1817raleqdv 3019 . . . . . . 7  |-  ( k  =  x  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
19182rexbidv 2862 . . . . . 6  |-  ( k  =  x  ->  ( E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2015, 19syl5bb 257 . . . . 5  |-  ( k  =  x  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2120notbid 294 . . . 4  |-  ( k  =  x  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2221cbvrabv 3067 . . 3  |-  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =  { x  e.  NN  |  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
x  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) }
23 simpr 461 . . . . 5  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
24 sneq 3985 . . . . . . . . . . 11  |-  ( c  =  u  ->  { c }  =  { u } )
2524imaeq2d 5267 . . . . . . . . . 10  |-  ( c  =  u  ->  ( `' F " { c } )  =  ( `' F " { u } ) )
2625eleq2d 2521 . . . . . . . . 9  |-  ( c  =  u  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2726ralbidv 2839 . . . . . . . 8  |-  ( c  =  u  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
28272rexbidv 2862 . . . . . . 7  |-  ( c  =  u  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2928ralbidv 2839 . . . . . 6  |-  ( c  =  u  ->  ( A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) ) )
3029cbvrexv 3044 . . . . 5  |-  ( E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3123, 30sylnib 304 . . . 4  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
32 rabn0 3755 . . . . . . 7  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
33 rexnal 2865 . . . . . . 7  |-  ( E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3432, 33bitri 249 . . . . . 6  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3534ralbii 2831 . . . . 5  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
36 ralnex 2864 . . . . 5  |-  ( A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3735, 36bitri 249 . . . 4  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3831, 37sylibr 212 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  A. u  e.  R  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =/=  (/) )
391, 2, 22, 38vdwnnlem3 14160 . 2  |-  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
40 iman 424 . 2  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  <->  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
4139, 40mpbir 209 1  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799   (/)c0 3735   {csn 3975   `'ccnv 4937   "cima 4941   -->wf 5512  (class class class)co 6190   Fincfn 7410   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388    - cmin 9696   NNcn 10423   ...cfz 11538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-er 7201  df-map 7316  df-pm 7317  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-card 8210  df-cda 8438  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-n0 10681  df-z 10748  df-uz 10963  df-rp 11093  df-fz 11539  df-fl 11743  df-hash 12205  df-vdwap 14131  df-vdwmc 14132  df-vdwpc 14133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator